Embark on a transformative journey with our Data Cleaning Project, where we meticulously refine and polish raw data into valuable insights. Our project focuses on streamlining data sets, removing inconsistencies, and ensuring accuracy to unlock its full potential.
Through advanced techniques and rigorous processes, we standardize formats, address missing values, and eliminate duplicates, creating a clean and reliable foundation for analysis. By enhancing data quality, we empower organizations to make informed decisions, drive innovation, and achieve strategic objectives with confidence.
Join us as we embark on this essential phase of data preparation, paving the way for more accurate and actionable insights that fuel success."
At Thomson Data, we help businesses clean up and manage messy B2B databases to ensure they are up-to-date, correct, and detailed. We believe your sales development representatives and marketing representatives should focus on building meaningful relationships with prospects, not scrubbing through bad data.
Here are the key steps involved in our B2B data cleansing process:
Data Auditing: We begin with a thorough audit of the database to identify errors, gaps, and inconsistencies, which majorly revolve around identifying outdated, incomplete, and duplicate information.
Data Standardization: Ensuring consistency in the data records is one of our prime services; it includes standardizing job titles, addresses, and company names. It ensures that they can be easily shared and used by different teams.
Data Deduplication: Another way we improve efficiency is by removing all duplicate records. Data deduplication is important in a large B2B dataset as multiple records from the same company may exist in the database.
Data Enrichment: After the first three steps, we enrich your data, fill in the missing details, and then enhance the database with up-to-date records. This is the step that ensures the database is valuable, providing insights that are actionable and complete.
What are the Key Benefits of Keeping the Data Clean with Thomson Data’s B2B Data Cleansing Service? Once you understand the benefits of our data cleansing service, it will entice you to optimize your data management practices, and it will additionally help you stay competitive in today’s data-driven market.
Here are some advantages of maintaining a clean database with Thomson Data:
Better ROI for your Sales and Marketing Campaigns: Our clean data will magnify your precise targeting, enabling you to strategize for effective campaigns, increased conversion rate, and ROI.
Compliant with Data Regulations:
The B2B data cleansing services we provide are compliant to global data norms.
Streamline Operations: Your efforts are directed in the right channel when your data is clean and accurate, as your team doesn’t have to spend their valuable time fixing errors.
To summarize, we would again bring your attention to how accurate data is essential for driving sales and marketing in a B2B environment. It enhances your business prowess in the avenues of decision-making and customer relationships. Therefore, it is better to have a proactive approach toward B2B data cleansing service and outsource our offerings to stay competitive by unlocking the full potential of your data.
Send us a request and we will be happy to assist you.
A data cleaning tool customised for cleaning and sorting the data generated during the Enviro-Champs pilot study as they are downloaded from Formshare, the platform capturing data sent from a customised ODK Collect form collection app. The dataset inclues the latest data from the pilot study as at 14 May 2024.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data cleansing software market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.2 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 12.5% during the forecast period. This substantial growth can be attributed to the increasing importance of maintaining clean and reliable data for business intelligence and analytics, which are driving the adoption of data cleansing solutions across various industries.
The proliferation of big data and the growing emphasis on data-driven decision-making are significant growth factors for the data cleansing software market. As organizations collect vast amounts of data from multiple sources, ensuring that this data is accurate, consistent, and complete becomes critical for deriving actionable insights. Data cleansing software helps organizations eliminate inaccuracies, inconsistencies, and redundancies, thereby enhancing the quality of their data and improving overall operational efficiency. Additionally, the rising adoption of advanced analytics and artificial intelligence (AI) technologies further fuels the demand for data cleansing software, as clean data is essential for the accuracy and reliability of these technologies.
Another key driver of market growth is the increasing regulatory pressure for data compliance and governance. Governments and regulatory bodies across the globe are implementing stringent data protection regulations, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations mandate organizations to ensure the accuracy and security of the personal data they handle. Data cleansing software assists organizations in complying with these regulations by identifying and rectifying inaccuracies in their data repositories, thus minimizing the risk of non-compliance and hefty penalties.
The growing trend of digital transformation across various industries also contributes to the expanding data cleansing software market. As businesses transition to digital platforms, they generate and accumulate enormous volumes of data. To derive meaningful insights and maintain a competitive edge, it is imperative for organizations to maintain high-quality data. Data cleansing software plays a pivotal role in this process by enabling organizations to streamline their data management practices and ensure the integrity of their data. Furthermore, the increasing adoption of cloud-based solutions provides additional impetus to the market, as cloud platforms facilitate seamless integration and scalability of data cleansing tools.
Regionally, North America holds a dominant position in the data cleansing software market, driven by the presence of numerous technology giants and the rapid adoption of advanced data management solutions. The region is expected to continue its dominance during the forecast period, supported by the strong emphasis on data quality and compliance. Europe is also a significant market, with countries like Germany, the UK, and France showing substantial demand for data cleansing solutions. The Asia Pacific region is poised for significant growth, fueled by the increasing digitalization of businesses and the rising awareness of data quality's importance. Emerging economies in Latin America and the Middle East & Africa are also expected to witness steady growth, driven by the growing adoption of data-driven technologies.
The role of Data Quality Tools cannot be overstated in the context of data cleansing software. These tools are integral in ensuring that the data being processed is not only clean but also of high quality, which is crucial for accurate analytics and decision-making. Data Quality Tools help in profiling, monitoring, and cleansing data, thereby ensuring that organizations can trust their data for strategic decisions. As organizations increasingly rely on data-driven insights, the demand for robust Data Quality Tools is expected to rise. These tools offer functionalities such as data validation, standardization, and enrichment, which are essential for maintaining the integrity of data across various platforms and applications. The integration of these tools with data cleansing software enhances the overall data management capabilities of organizations, enabling them to achieve greater operational efficiency and compliance with data regulations.
The data cle
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599
Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599
The folder named “submission” contains the following:
ijgis.yml
: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml
file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject
folder contains several .py
files and subfolders, each with specific functionality as described below..png
file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv
files.overlapping_sliding_window_loop.py
.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5))
in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv
files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv
file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes all of the data downloaded from GBIF (DOIs provided in README.md as well as below, downloaded Feb 2021) as well as data downloaded from SCAN. This dataset has 2,808,432 records and can be used as a reference to the verbatim data before it underwent the cleaning process. The only modifications made to this datset after direct download from the data portals are the following:
1) for GBIF records, I renamed the countryCode column to be "country" so that the column title is consistent across both GBIF and SCAN 2) A source column was added where I specify if the record came from GBIF or SCAN 3) Duplicate records across SCAN and GBIF were removed by identifying identical instances "catalogNumber" and "institutionCode" 4) Only the Darwin core columns (DwC) that were shared across downloaded datasets were retained. GBIF contained ~249 DwC variables, and SCAN data contained fewer, so this combined dataset only includes the ~80 columns shared between the two datasets
For GBIF, we downloaded the data in three separate chunks, therefore there are three DOIs. See below:
GBIF.org (3 February 2021) GBIF Occurrence Downloadhttps://doi.org/10.15468/dl.6cxfsw GBIF.org (3 February 2021) GBIF Occurrence Downloadhttps://doi.org/10.15468/dl.b9rfa7 GBIF.org (3 February 2021) GBIF Occurrence Downloadhttps://doi.org/10.15468/dl.w2nndm
OpenRefine (formerly Google Refine) is a powerful free and open source tool for data cleaning, enabling you to correct errors in the data, and make sure that the values and formatting are consistent. In addition, OpenRefine records your processing steps, enabling you to apply the same cleaning procedure to other data, and enhancing the reproducibility of your analysis. This workshop will teach you to use OpenRefine to clean and format data and automatically track any changes that you make.
Quadrant provides Insightful, accurate, and reliable mobile location data.
Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.
These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.
We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.
We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.
Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.
Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The market for data center cleaning services is expected to grow from USD XXX million in 2025 to USD XXX million by 2033, at a CAGR of XX% during the forecast period 2025-2033. The growth of the market is attributed to the increasing number of data centers and the need to maintain these facilities in a clean environment. Data centers are critical to the functioning of the modern economy, as they house the servers that store and process vast amounts of data. Maintaining these facilities in a clean environment is essential to prevent the accumulation of dust and other contaminants, which can lead to equipment failures and downtime. The market for data center cleaning services is segmented by type, application, and region. By type, the market is segmented into equipment cleaning, ceiling cleaning, floor cleaning, and others. Equipment cleaning is the largest segment of the market, accounting for over XX% of the total market revenue in 2025. By application, the market is segmented into the internet industry, finance and insurance, manufacturing industry, government departments, and others. The internet industry is the largest segment of the market, accounting for over XX% of the total market revenue in 2025. By region, the market is segmented into North America, South America, Europe, the Middle East & Africa, and Asia Pacific. North America is the largest segment of the market, accounting for over XX% of the total market revenue in 2025.
Data Wrangling Market Size 2024-2028
The data wrangling market size is forecast to increase by USD 1.4 billion at a CAGR of 14.8% between 2023 and 2028. The market is experiencing significant growth due to the numerous benefits provided by data wrangling solutions, including data cleaning, transformation, and enrichment. One major trend driving market growth is the rising need for technology such as the competitive intelligence and artificial intelligence in the healthcare sector, where data wrangling is essential for managing and analyzing patient data to improve patient outcomes and reduce costs. However, a challenge facing the market is the lack of awareness of data wrangling tools among small and medium-sized enterprises (SMEs), which limits their ability to effectively manage and utilize their data. Despite this, the market is expected to continue growing as more organizations recognize the value of data wrangling in driving business insights and decision-making.
What will be the Size of the Market During the Forecast Period?
Request Free Sample
The market is experiencing significant growth due to the increasing demand for data management and analysis in various industries. The market is experiencing significant growth due to the increasing volume, variety, and velocity of data being generated from various sources such as IoT devices, financial services, and smart cities. Artificial intelligence and machine learning technologies are being increasingly used for data preparation, data cleaning, and data unification. Data wrangling, also known as data munging, is the process of cleaning, transforming, and enriching raw data to make it usable for analysis. This process is crucial for businesses aiming to gain valuable insights from their data and make informed decisions. Data analytics is a primary driver for the market, as organizations seek to extract meaningful insights from their data. Cloud solutions are increasingly popular for data wrangling due to their flexibility, scalability, and cost-effectiveness.
Furthermore, both on-premises and cloud-based solutions are being adopted by businesses to meet their specific data management requirements. Multi-cloud strategies are also gaining traction in the market, as organizations seek to leverage the benefits of multiple cloud providers. This approach allows businesses to distribute their data across multiple clouds, ensuring business continuity and disaster recovery capabilities. Data quality is another critical factor driving the market. Ensuring data accuracy, completeness, and consistency is essential for businesses to make reliable decisions. The market is expected to grow further as organizations continue to invest in big data initiatives and implement advanced technologies such as AI and ML to gain a competitive edge. Data cleaning and data unification are key processes in data wrangling that help improve data quality. The finance and insurance industries are major contributors to the market, as they generate vast amounts of data daily.
In addition, real-time analysis is becoming increasingly important in these industries, as businesses seek to gain insights from their data in near real-time to make informed decisions. The Internet of Things (IoT) is also driving the market, as businesses seek to collect and analyze data from IoT devices to gain insights into their operations and customer behavior. Edge computing is becoming increasingly popular for processing IoT data, as it allows for faster analysis and decision-making. Self-service data preparation is another trend in the market, as businesses seek to empower their business users to prepare their data for analysis without relying on IT departments.
Moreover, this approach allows businesses to be more agile and responsive to changing business requirements. Big data is another significant trend in the market, as businesses seek to manage and analyze large volumes of data to gain insights into their operations and customer behavior. Data wrangling is a critical process in managing big data, as it ensures that the data is clean, transformed, and enriched to make it usable for analysis. In conclusion, the market in North America is experiencing significant growth due to the increasing demand for data management and analysis in various industries. Cloud solutions, multi-cloud strategies, data quality, finance and insurance, IoT, real-time analysis, self-service data preparation, and big data are some of the key trends driving the market. Businesses that invest in data wrangling solutions can gain a competitive edge by gaining valuable insights from their data and making informed decisions.
Market Segmentation
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Sec
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder "XPS data" contains original and evaluated XPS data (.vms) on a p-GaN sample which was treated at various temperatures and underwent Ar+ irradiation.
Furthermore, the folder "REM Images" contains REM images (.tif) and EDX data (.xlsx) on the used excessively treated sample.
All images that are published in the main manuscript are collected as .tif files in the folder "images".
The Palestinian society's access to information and communication technology tools is one of the main inputs to achieve social development and economic change to the status of Palestinian society; on the basis of its impact on the revolution of information and communications technology that has become a feature of this era. Therefore, and within the scope of the efforts exerted by the Palestinian Central Bureau of Statistics in providing official Palestinian statistics on various areas of life for the Palestinian community, PCBS implemented the household survey for information and communications technology for the year 2019. The main objective of this report is to present the trends of accessing and using information and communication technology by households and individuals in Palestine, and enriching the information and communications technology database with indicators that meet national needs and are in line with international recommendations.
Palestine, West Bank, Gaza strip
Household, Individual
All Palestinian households and individuals (10 years and above) whose usual place of residence in 2019 was in the state of Palestine.
Sample survey data [ssd]
Sampling Frame The sampling frame consists of master sample which were enumerated in the 2017 census. Each enumeration area consists of buildings and housing units with an average of about 150 households. These enumeration areas are used as primary sampling units (PSUs) in the first stage of the sampling selection.
Sample size The estimated sample size is 8,040 households.
Sample Design The sample is three stages stratified cluster (pps) sample. The design comprised three stages: Stage (1): Selection a stratified sample of 536 enumeration areas with (pps) method. Stage (2): Selection a stratified random sample of 15 households from each enumeration area selected in the first stage. Stage (3): Selection one person of the (10 years and above) age group in a random method by using KISH TABLES.
Sample Strata The population was divided by: 1- Governorate (16 governorates, where Jerusalem was considered as two statistical areas) 2- Type of Locality (urban, rural, refugee camps).
Computer Assisted Personal Interview [capi]
Questionnaire The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.
Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.
Section III: Data on Individuals (10 years and over) about computer use, access to the Internet and possession of a mobile phone.
Programming Consistency Check The data collection program was designed in accordance with the questionnaire's design and its skips. The program was examined more than once before the conducting of the training course by the project management where the notes and modifications were reflected on the program by the Data Processing Department after ensuring that it was free of errors before going to the field.
Using PC-tablet devices reduced data processing stages, and fieldworkers collected data and sent it directly to server, and project management withdraw the data at any time.
In order to work in parallel with Jerusalem (J1), a data entry program was developed using the same technology and using the same database used for PC-tablet devices.
Data Cleaning After the completion of data entry and audit phase, data is cleaned by conducting internal tests for the outlier answers and comprehensive audit rules through using SPSS program to extract and modify errors and discrepancies to prepare clean and accurate data ready for tabulation and publishing.
Tabulation After finalizing checking and cleaning data from any errors. Tables extracted according to prepared list of tables.
The response rate in the West Bank reached 77.6% while in the Gaza Strip it reached 92.7%.
Sampling Errors Data of this survey affected by sampling errors due to use of the sample and not a complete enumeration. Therefore, certain differences are expected in comparison with the real values obtained through censuses. Variance were calculated for the most important indicators, There is no problem to disseminate results at the national level and at the level of the West Bank and Gaza Strip.
Non-Sampling Errors Non-Sampling errors are possible at all stages of the project, during data collection or processing. These are referred to non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, as well as practical and theoretical training during the training course.
The implementation of the survey encountered non-response where the case (household was not present at home) during the fieldwork visit become the high percentage of the non response cases. The total non-response rate reached 17.5%. The refusal percentage reached 2.9% which is relatively low percentage compared to the household surveys conducted by PCBS, and the reason is the questionnaire survey is clear.
Within the frame of PCBS' efforts in providing official Palestinian statistics in the different life aspects of Palestinian society and because the wide spread of Computer, Internet and Mobile Phone among the Palestinian people, and the important role they may play in spreading knowledge and culture and contribution in formulating the public opinion, PCBS conducted the Household Survey on Information and Communications Technology, 2014.
The main objective of this survey is to provide statistical data on Information and Communication Technology in the Palestine in addition to providing data on the following: - Prevalence of computers and access to the Internet. - Study the penetration and purpose of Technology use.
Palestine (West Bank and Gaza Strip), type of locality (urban, rural, refugee camps) and governorate.
All Palestinian households and individuals whose usual place of residence in Palestine with focus on persons aged 10 years and over in year 2014.
Sample survey data [ssd]
Sampling Frame The sampling frame consists of a list of enumeration areas adopted in the Population, Housing and Establishments Census of 2007. Each enumeration area has an average size of about 124 households. These were used in the first phase as Preliminary Sampling Units in the process of selecting the survey sample.
Sample Size The total sample size of the survey was 7,268 households, of which 6,000 responded.
Sample Design The sample is a stratified clustered systematic random sample. The design comprised three phases:
Phase I: Random sample of 240 enumeration areas. Phase II: Selection of 25 households from each enumeration area selected in phase one using systematic random selection. Phase III: Selection of an individual (10 years or more) in the field from the selected households; KISH TABLES were used to ensure indiscriminate selection.
Sample Strata Distribution of the sample was stratified by: 1- Governorate (16 governorates, J1). 2- Type of locality (urban, rural and camps).
Face-to-face [f2f]
The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.
Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.
Section III: Data on persons (aged 10 years and over) about computer use, access to the Internet and possession of a mobile phone.
Preparation of Data Entry Program: This stage included preparation of the data entry programs using an ACCESS package and defining data entry control rules to avoid errors, plus validation inquiries to examine the data after it had been captured electronically.
Data Entry: The data entry process started on the 8th of May 2014 and ended on the 23rd of June 2014. The data entry took place at the main PCBS office and in field offices using 28 data clerks.
Editing and Cleaning procedures: Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
Response Rates: 79%
There are many aspects of the concept of data quality; this includes the initial planning of the survey to the dissemination of the results and how well users understand and use the data. There are three components to the quality of statistics: accuracy, comparability, and quality control procedures.
Checks on data accuracy cover many aspects of the survey and include statistical errors due to the use of a sample, non-statistical errors resulting from field workers or survey tools, and response rates and their effect on estimations. This section includes:
Statistical Errors Data of this survey may be affected by statistical errors due to the use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators.
Variance calculations revealed that there is no problem in disseminating results nationally or regionally (the West Bank, Gaza Strip), but some indicators show high variance by governorate, as noted in the tables of the main report.
Non-Statistical Errors Non-statistical errors are possible at all stages of the project, during data collection or processing. These are referred to as non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, and practical and theoretical training took place during the training course. Training manuals were provided for each section of the questionnaire, along with practical exercises in class and instructions on how to approach respondents to reduce refused cases. Data entry staff were trained on the data entry program, which was tested before starting the data entry process.
Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
The sources of non-statistical errors can be summarized as: 1. Some of the households were not at home and could not be interviewed, and some households refused to be interviewed. 2. In unique cases, errors occurred due to the way the questions were asked by interviewers and respondents misunderstood some of the questions.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is used in a data cleaning project based on the raw data from Alex the Analyst's Power BI tutorial series. The original dataset can be found here.
The dataset is employed in a mini project that involves cleaning and preparing data for analysis. It is part of a series of exercises aimed at enhancing skills in data cleaning using Pandas.
The dataset contains information related to [provide a brief description of the data, e.g., sales, customer information, etc.]. The columns cover various aspects such as [list key columns and their meanings].
The original dataset is sourced from Alex the Analyst's Power BI tutorial series. Special thanks to [provide credit or acknowledgment] for making the dataset available.
If you use this dataset in your work, please cite it as follows:
Feel free to reach out for any additional information or clarification. Happy analyzing!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 4.  Output of the curation procedure for the EPISuite™ solubility dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets presented here were partially used in “Formulation and MIP-heuristics for the lot sizing and scheduling problem with temporal cleanings” (Toscano, A., Ferreira, D. , Morabito, R. , Computers & Chemical Engineering) [1], in “A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning” (Toscano, A., Ferreira, D. , Morabito, R. , Flexible Services and Manufacturing Journal) [2], and in “A heuristic approach to optimize the production scheduling of fruit-based beverages” (Toscano et al., Gestão & Produção, 2020) [3]. In fruit-based production processes, there are two production stages: preparation tanks and production lines. This production process has some process-specific characteristics, such as temporal cleanings and synchrony between the two production stages, which make optimized production planning and scheduling even more difficult. In this sense, some papers in the literature have proposed different methods to solve this problem. To the best of our knowledge, there are no standard datasets used by researchers in the literature in order to verify the accuracy and performance of proposed methods or to be a benchmark for other researchers considering this problem. The authors have been using small data sets that do not satisfactorily represent different scenarios of production. Since the demand in the beverage sector is seasonal, a wide range of scenarios enables us to evaluate the effectiveness of the proposed methods in the scientific literature in solving real scenarios of the problem. The datasets presented here include data based on real data collected from five beverage companies. We presented four datasets that are specifically constructed assuming a scenario of restricted capacity and balanced costs. These dataset is supplementary data for the submitted paper to Data in Brief [4]. [1] Toscano, A., Ferreira, D., Morabito, R., Formulation and MIP-heuristics for the lot sizing and scheduling problem with temporal cleanings, Computers & Chemical Engineering. 142 (2020) 107038. Doi: 10.1016/j.compchemeng.2020.107038. [2] Toscano, A., Ferreira, D., Morabito, R., A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning, Flexible Services and Manufacturing Journal. 31 (2019) 142-173. Doi: 10.1007/s10696-017-9303-9. [3] Toscano, A., Ferreira, D., Morabito, R., Trassi, M. V. C., A heuristic approach to optimize the production scheduling of fruit-based beverages. Gestão & Produção, 27(4), e4869, 2020. https://doi.org/10.1590/0104-530X4869-20. [4] Piñeros, J., Toscano, A., Ferreira, D., Morabito, R., Datasets for lot sizing and scheduling problems in the fruit-based beverage production process. Data in Brief (2021).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Seaskull Dataset
Description
The Seaskull dataset follows the same format and purpose as the Helix dataset but contains distinct data. It has undergone a cleaning process to ensure data quality and usability.
Dataset Details
Source Dataset: Private Haribon dataset Data Cleaning: The Seaskull dataset has been cleaned to eliminate Null and NaN values, ensuring data reliability.
License
Please adhere to the licensing terms provided by the dataset… See the full description on the dataset page: https://huggingface.co/datasets/KaleidoSG/Seaskull.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data collection process commenced with web scraping of a selected higher education institution's website, collecting any data that relates to the admission topic of higher education institutions, during the period from July to September 2023. This resulted in a raw dataset primarily cantered around admission-related content. Subsequently, meticulous data cleaning and organization procedures were implemented to refine the dataset. The primary data, in its raw form before annotation into a question-and-answer format, was predominantly in the Indonesian language. Following this, a comprehensive annotation process was conducted to enrich the dataset with specific admission-related information, transforming it into secondary data. Both primary and secondary data predominantly remained in the Indonesian language. To enhance data quality, we added filters to remove or exclude: 1) data not in the Indonesian language, 2) data unrelated to the admission topic, and 3) redundant entries. This meticulous curation has culminated in the creation of a finalized dataset, meticulously prepared and now readily available for research and analysis in the domain of higher education admission.
Embark on a transformative journey with our Data Cleaning Project, where we meticulously refine and polish raw data into valuable insights. Our project focuses on streamlining data sets, removing inconsistencies, and ensuring accuracy to unlock its full potential.
Through advanced techniques and rigorous processes, we standardize formats, address missing values, and eliminate duplicates, creating a clean and reliable foundation for analysis. By enhancing data quality, we empower organizations to make informed decisions, drive innovation, and achieve strategic objectives with confidence.
Join us as we embark on this essential phase of data preparation, paving the way for more accurate and actionable insights that fuel success."