100+ datasets found
  1. Logs and Mined Sequential Patterns of Programming Processes from...

    • figshare.com
    txt
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minji Kong; Lori Pollock (2023). Logs and Mined Sequential Patterns of Programming Processes from "Semi-Automatically Mining Students' Common Scratch Programming Behaviors" [Dataset]. http://doi.org/10.6084/m9.figshare.12100797.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Minji Kong; Lori Pollock
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present a ProgSnap2-based dataset containing anonymized logs of over 34,000 programming events exhibited by 81 programming students in Scratch, a visual programming environment, during our designed study as described in the paper "Semi-Automatically Mining Students' Common Scratch Programming Behaviors." We also include a list of approx. 3100 mined sequential patterns of programming processes that are performed by at least 10% of the 62 of the 81 students who are novice programmers, and represent maximal patterns generated by the MG-FSM algorithm while allowing a gap of one programming event. README.txt — overview of the dataset and its propertiesmainTable.csv — main event table of the dataset holding rows of programming eventscodeState.csv — table holding XML representations of code snapshots at the time of each programming eventdatasetMetadata.csv — describes features of the datasetScratch-SeqPatterns.txt — list of sequential patterns mined from the Main Event Table

  2. G

    Data Mining Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Mining Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-mining-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market Outlook




    According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.




    One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.




    Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.




    The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.




    From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.





    Component Analysis




    The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro

  3. Datas of Disease Patterns

    • figshare.com
    zip
    Updated Jun 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jichang Zhao (2017). Datas of Disease Patterns [Dataset]. http://doi.org/10.6084/m9.figshare.5035775.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Jichang Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.the "dingxiang_datas.xls"contains all the original data which is crawled from DingXiang forum, and also the word segmentation result for each medical record is given.2.the "pmi_new_words.txt" is the result of new medical words found by calculating mutual information.3.the "association_rules" folder contains the association rules mined from the dataset where h-confidence threshold is set 0.3 and support threshold is set 0.0001.4.the "network_communities.csv" describes the complication communities.p.s. if you encounter a "d", it means the word is a disease description vocabulary, and "z" or "s" represents a symptom description vocabulary.

  4. A pre-trained sound event detection neural network

    • figshare.com
    • search.datacite.org
    bin
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ian McLoughlin (2023). A pre-trained sound event detection neural network [Dataset]. http://doi.org/10.6084/m9.figshare.5245789.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Ian McLoughlin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a network trained earlier on clean data. It does not give very good results but is enough to show the system working. It can achieve above 90% on clean sounds and probably about 80% accuracy in 0dB SNR.The network was saved manually (using the MATLAB 'save' command) after running the training code, and before running the testing code.

  5. r

    Results: Time Series Indexing (TSI)

    • researchdata.edu.au
    • bridges.monash.edu
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang Wei Tan (2022). Results: Time Series Indexing (TSI) [Dataset]. http://doi.org/10.4225/03/587db0d0b3770
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Monash University
    Authors
    Chang Wei Tan
    Description

    This are the results for the work published in "Indexing and classifying gigabytes of time series under time warping"

  6. Real Market Data for Association Rules

    • kaggle.com
    zip
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruken Missonnier (2023). Real Market Data for Association Rules [Dataset]. https://www.kaggle.com/datasets/rukenmissonnier/real-market-data
    Explore at:
    zip(3068 bytes)Available download formats
    Dataset updated
    Sep 15, 2023
    Authors
    Ruken Missonnier
    Description

    1. Introduction

    Within the confines of this document, we embark on a comprehensive journey delving into the intricacies of a dataset meticulously curated for the purpose of association rules mining. This sophisticated data mining technique is a linchpin in the realms of market basket analysis. The dataset in question boasts an array of items commonly found in retail transactions, each meticulously encoded as a binary variable, with "1" denoting presence and "0" indicating absence in individual transactions.

    2. Dataset Overview

    Our dataset unfolds as an opulent tapestry of distinct columns, each dedicated to the representation of a specific item:

    • Bread
    • Honey
    • Bacon
    • Toothpaste
    • Banana
    • Apple
    • Hazelnut
    • Cheese
    • Meat
    • Carrot
    • Cucumber
    • Onion
    • Milk
    • Butter
    • ShavingFoam
    • Salt
    • Flour
    • HeavyCream
    • Egg
    • Olive
    • Shampoo
    • Sugar

    3. Purpose of the Dataset

    The raison d'être of this dataset is to serve as a catalyst for the discovery of intricate associations and patterns concealed within the labyrinthine network of customer transactions. Each row in this dataset mirrors a solitary transaction, while the values within each column serve as sentinels, indicating whether a particular item was welcomed into a transaction's embrace or relegated to the periphery.

    4. Data Format

    The data within this repository is rendered in a binary symphony, where the enigmatic "1" enunciates the acquisition of an item, and the stoic "0" signifies its conspicuous absence. This binary manifestation serves to distill the essence of the dataset, centering the focus on item presence, rather than the quantum thereof.

    5. Potential Applications

    This dataset unfurls its wings to encompass an assortment of prospective applications, including but not limited to:

    • Market Basket Analysis: Discerning items that waltz together in shopping carts, thus bestowing enlightenment upon the orchestration of product placement and marketing strategies.
    • Recommender Systems: Crafting bespoke product recommendations, meticulously tailored to each customer's historical transactional symphony.
    • Inventory Management: Masterfully fine-tuning stock levels for items that find kinship in frequent co-acquisition, thereby orchestrating a harmonious reduction in carrying costs and stockouts.
    • Customer Behavior Analysis: Peering into the depths of customer proclivities and purchase patterns, paving the way for the sculpting of exquisite marketing campaigns.

    6. Analysis Techniques

    The treasure trove of this dataset beckons the deployment of quintessential techniques, among them the venerable Apriori and FP-Growth algorithms. These stalwart algorithms are proficient at ferreting out the elusive frequent itemsets and invaluable association rules, shedding light on the arcane symphony of customer behavior and item co-occurrence patterns.

    7. Conclusion

    In closing, the association rules dataset unfurled before you offers an alluring odyssey, replete with the promise of discovering priceless patterns and affiliations concealed within the tapestry of transactional data. Through the artistry of data mining algorithms, businesses and analysts stand poised to unearth hitherto latent insights capable of steering the helm of strategic decisions, elevating the pantheon of customer experiences, and orchestrating the symphony of operational optimization.

  7. r

    Index1NN: Time Series Indexing (TSI)

    • researchdata.edu.au
    • bridges.monash.edu
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang Wei Tan (2022). Index1NN: Time Series Indexing (TSI) [Dataset]. http://doi.org/10.4225/03/587db15ba0852
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Monash University
    Authors
    Chang Wei Tan
    Description

    This is the required files to run the experiment published in the paper "Indexing and classifying gigabytes of time series under time warping". It contains the nearest neighbour indices for each query in each dataset.

  8. l

    LSC (Leicester Scientific Corpus)

    • figshare.le.ac.uk
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LSC (Leicester Scientific Corpus) [Dataset]. http://doi.org/10.25392/leicester.data.9449639.v1
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LSC (Leicester Scientific Corpus)August 2019 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data is extracted from the Web of Science® [1] You may not copy or distribute this data in whole or in part without the written consent of Clarivate Analytics.Getting StartedThis text provides background information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the sense of research texts. One of the goal of publishing the data is to make it available for further analysis and use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English.The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018.Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper3. Abstract: The abstract of the paper4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’.5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’.6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4]7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,824.All documents in LSC have nonempty abstract, title, categories, research areas and times cited in WoS databases. There are 119 documents with empty authors list, we did not exclude these documents.Data ProcessingThis section describes all steps in order for the LSC to be collected, clean and available to researchers. Processing the data consists of six main steps:Step 1: Downloading of the Data OnlineThis is the step of collecting the dataset online. This is done manually by exporting documents as Tab-delimitated files. All downloaded documents are available online.Step 2: Importing the Dataset to RThis is the process of converting the collection to RData format for processing the data. The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryNot all papers have abstract and categories in the collection. As our research is based on the analysis of abstracts and categories, preliminary detecting and removing inaccurate documents were performed. All documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsTraditionally, abstracts are written in a format of executive summary with one paragraph of continuous writing, which is known as ‘unstructured abstract’. However, especially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc.Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. As a result, some of structured abstracts in the LSC require additional process of correction to split such concatenate words. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. in the corpus. The detection and identification of concatenate words cannot be totally automated. Human intervention is needed in the identification of possible headings of sections. We note that we only consider concatenate words in headings of sections as it is not possible to detect all concatenate words without deep knowledge of research areas. Identification of such words is done by sampling of medicine-related publications. The section headings in such abstracts are listed in the List 1.List 1 Headings of sections identified in structured abstractsBackground Method(s) DesignTheoretical Measurement(s) LocationAim(s) Methodology ProcessAbstract Population ApproachObjective(s) Purpose(s) Subject(s)Introduction Implication(s) Patient(s)Procedure(s) Hypothesis Measure(s)Setting(s) Limitation(s) DiscussionConclusion(s) Result(s) Finding(s)Material (s) Rationale(s)Implications for health and nursing policyAll words including headings in the List 1 are detected in entire corpus, and then words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.Step 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction of concatenate words is completed, the lengths of abstracts are calculated. ‘Length’ indicates the totalnumber of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. However, word limits vary from journal to journal. For instance, Journal of Vascular Surgery recommends that ‘Clinical and basic research studies must include a structured abstract of 400 words or less’[7].In LSC, the length of abstracts varies from 1 to 3805. We decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis. Documents containing less than 30 and more than 500 words in abstracts are removed.Step 6: Saving the Dataset into CSV FormatCorrected and extracted documents are saved into 36 CSV files. The structure of files are described in the following section.The Structure of Fields in CSV FilesIn CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in separated fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html[3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html[4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US[5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3[6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.[7]P. Gloviczki and P. F. Lawrence, "Information for authors," Journal of Vascular Surgery, vol. 65, no. 1, pp. A16-A22, 2017.

  9. m

    Results

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated Jun 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang Wei Tan (2019). Results [Dataset]. http://doi.org/10.26180/5c30a56c0bda8
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 10, 2019
    Dataset provided by
    Monash University
    Authors
    Chang Wei Tan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the results for the FastEE paper.

  10. Software Architectural Styles

    • kaggle.com
    zip
    Updated Mar 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    QadeemKhan (2017). Software Architectural Styles [Dataset]. https://www.kaggle.com/qadeemkhan/dataset-of-software-architectural-styles
    Explore at:
    zip(40263 bytes)Available download formats
    Dataset updated
    Mar 27, 2017
    Authors
    QadeemKhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Software systems are composed of one or more software architectural styles. These styles define the usage patterns of a programmer in order to develop a complex project. These architectural styles are required to analyze for pattern similarity in the structure of multiple groups of projects. The researcher can apply different types of data mining algorithms to analyze the software projects through architectural styles used. The dataset is obtained from an online questionnaire delivered to the world 's best academic and software industry.

    Content

    The content of this dataset are multiple architectural styles utilized by the system. He attributes are Repository, Client Server, Abstract Machine,Object Oriented,Function Oriented,Event Driven,Layered, Pipes & Filters, Data centeric, Blackboard, Rule Based, Publish Subscribe, Asynchronous Messaging, Plug-ins, Microkernel, Peer-to-Peer, Domain Driven, Shared Nothing.

    Acknowledgements

    Thanks to my honorable teacher Prof.Dr Usman Qamar for guiding me to accomplish this wonderful task.

    Inspiration

    The dataset is capable of updating and refinements.Any researcher ,who want to contribute ,plz feel free to ask.

  11. d

    Fuzzy Spatiotemporal Data Mining to Activity Recognition in Smart Homes

    • catalog.data.gov
    • s.cnmilf.com
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Fuzzy Spatiotemporal Data Mining to Activity Recognition in Smart Homes [Dataset]. https://catalog.data.gov/dataset/fuzzy-spatiotemporal-data-mining-to-activity-recognition-in-smart-homes
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    Dashlink
    Description

    A primary goal to design smart homes is to provide automatic assistance for the residents to make them able to live independently at home. Activity recognition is done to achieve the mentioned goal and then to provide assistance, we would need three sort of information. First, we would need to know the goal of the resident, then the pattern that the resident should obey to achieve its goal and third sort of needed information is the deviations from the previously known patterns. In the presented paper, spatiotemporal aspects of daily activities are surveyed to mine the patterns of activities realized by the smart homes residents. Necessary data to model the spatiotemporal aspects of daily activities is provided by embedded sensors in the smart home. We believe that to accomplish daily activities, specific objects are applied and by analyzing the movement of objects and resident(s), we would obtain valuable information to model the daily activities of the Smart Home’s residents.

  12. r

    Triple random ensemble method for multi-label classification

    • researchdata.edu.au
    • dro.deakin.edu.au
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    G Tsoumakas; G Nasierding; Abbas Z. Kouzani (2024). Triple random ensemble method for multi-label classification [Dataset]. https://researchdata.edu.au/triple-random-ensemble-label-classification/3385179
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Deakin University
    Authors
    G Tsoumakas; G Nasierding; Abbas Z. Kouzani
    Description

    Triple random ensemble method for multi-label classification

  13. Synthetic data sets

    • figshare.com
    zip
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vanha tran (2020). Synthetic data sets [Dataset]. http://doi.org/10.6084/m9.figshare.12858086.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 24, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    vanha tran
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Synthetic data sets for co-location pattern mining.

  14. Data mining approaches to quantifying the formation of secondary organic...

    • catalog.data.gov
    • datasets.ai
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2021). Data mining approaches to quantifying the formation of secondary organic aerosol [Dataset]. https://catalog.data.gov/dataset/data-mining-approaches-to-quantifying-the-formation-of-secondary-organic-aerosol
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This research used data mining approaches to better understand factors affecting the formation of secondary organic aerosol (SOA). Although numerous laboratory and computational studies have been completed on SOA formation, it is still challenging to determine factors that most influence SOA formation. Experimental data were based on previous work described by Offenberg et al. (2017), where volume concentrations of SOA were measured in 139 laboratory experiments involving the oxidation of single hydrocarbons under different operating conditions. Three different data mining methods were used, including nearest neighbor, decision tree, and pattern mining. Both decision tree and pattern mining approaches identified similar chemical and experimental conditions that were important to SOA formation. Among these important factors included the number of methyl groups, the number of rings and the presence of dinitrogen pentoxide (N2O5). This dataset is associated with the following publication: Olson, D., J. Offenberg, M. Lewandowski, T. Kleindienst, K. Docherty, M. Jaoui, J.D. Krug, and T. Riedel. Data mining approaches to understanding the formation of secondary organic aerosol. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 252: 118345, (2021).

  15. Market Basket Analysis

    • kaggle.com
    zip
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    zip(23875170 bytes)Available download formats
    Dataset updated
    Dec 9, 2021
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  16. l

    LScDC (Leicester Scientific Dictionary-Core)

    • figshare.le.ac.uk
    docx
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LScDC (Leicester Scientific Dictionary-Core) [Dataset]. http://doi.org/10.25392/leicester.data.9896579.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LScDC (Leicester Scientific Dictionary-Core Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScDC (Leicester Scientific Dictionary-Core) is formed using the updated LScD (Leicester Scientific Dictionary) - Version 3*. All steps applied to build the new version of core dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. The files provided with this description are also same as described as for LScDC Version 2. The numbers of words in the 3rd versions of LScD and LScDC are summarized below. # of wordsLScD (v3) 972,060LScDC (v3) 103,998 * Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v3 ** Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v2[Version 2] Getting StartedThis file describes a sorted and cleaned list of words from LScD (Leicester Scientific Dictionary), explains steps for sub-setting the LScD and basic statistics of words in the LSC (Leicester Scientific Corpus), to be found in [1, 2]. The LScDC (Leicester Scientific Dictionary-Core) is a list of words ordered by the number of documents containing the words, and is available in the CSV file published. There are 104,223 unique words (lemmas) in the LScDC. This dictionary is created to be used in future work on the quantification of the sense of research texts. The objective of sub-setting the LScD is to discard words which appear too rarely in the corpus. In text mining algorithms, usage of enormous number of text data brings the challenge to the performance and the accuracy of data mining applications. The performance and the accuracy of models are heavily depend on the type of words (such as stop words and content words) and the number of words in the corpus. Rare occurrence of words in a collection is not useful in discriminating texts in large corpora as rare words are likely to be non-informative signals (or noise) and redundant in the collection of texts. The selection of relevant words also holds out the possibility of more effective and faster operation of text mining algorithms.To build the LScDC, we decided the following process on LScD: removing words that appear in no more than 10 documents (

  17. Data Mining Software in Australia - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Data Mining Software in Australia - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/australia/employment/data-mining-software/5598/
    Explore at:
    Dataset updated
    Jan 8, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    Australia
    Description

    Companies in this industry develop software for data mining. Data mining is the process of extracting patterns from large data sets.

  18. s

    Data from: Comprehensive Evaluation of Association Measures for Fault...

    • researchdata.smu.edu.sg
    rar
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LUCIA Lucia; David LO; Lingxiao JIANG; Aditya Budi (2023). Data from: Comprehensive Evaluation of Association Measures for Fault Localization [Dataset]. http://doi.org/10.25440/smu.12062796.v1
    Explore at:
    rarAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    LUCIA Lucia; David LO; Lingxiao JIANG; Aditya Budi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This record contains the underlying research data for the publication "Comprehensive Evaluation of Association Measures for Fault Localization" and the full-text is available from: https://ink.library.smu.edu.sg/sis_research/1330In statistics and data mining communities, there have been many measures proposed to gauge the strength of association between two variables of interest, such as odds ratio, confidence, Yule-Y, Yule-Q, Kappa, and gini index. These association measures have been used in various domains, for example, to evaluate whether a particular medical practice is associated positively to a cure of a disease or whether a particular marketing strategy is associated positively to an increase in revenue, etc. This paper models the problem of locating faults as association between the execution or non-execution of particular program elements with failures. There have been special measures, termed as suspiciousness measures, proposed for the task. Two state-of-the-art measures are Tarantula and Ochiai, which are different from many other statistical measures. To the best of our knowledge, there is no study that comprehensively investigates the effectiveness of various association measures in localizing faults. This paper fills in the gap by evaluating 20 wellknown association measures and compares their effectiveness in fault localization tasks with Tarantula and Ochiai. Evaluation on the Siemens programs show that a number of association measures perform statistically comparable as Tarantula and Ochiai.

  19. r

    Results

    • researchdata.edu.au
    • bridges.monash.edu
    • +1more
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang Wei Tan (2022). Results [Dataset]. http://doi.org/10.4225/03/59e302de4ad10
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Monash University
    Authors
    Chang Wei Tan
    Description

    This is the result folder for our SDM18 paper on "Efficient search of the best warping window for Dynamic Time Warping"

  20. m

    T10I4D1000K transactional database

    • data.mendeley.com
    Updated Oct 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Uday kiran RAGE (2019). T10I4D1000K transactional database [Dataset]. http://doi.org/10.17632/tykb96s325.1
    Explore at:
    Dataset updated
    Oct 23, 2019
    Authors
    Uday kiran RAGE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a synthetic database widely used for evaluating the scalability of pattern mining patterns. This database is generated using IBM Data Quest generator.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Minji Kong; Lori Pollock (2023). Logs and Mined Sequential Patterns of Programming Processes from "Semi-Automatically Mining Students' Common Scratch Programming Behaviors" [Dataset]. http://doi.org/10.6084/m9.figshare.12100797.v1
Organization logo

Logs and Mined Sequential Patterns of Programming Processes from "Semi-Automatically Mining Students' Common Scratch Programming Behaviors"

Explore at:
txtAvailable download formats
Dataset updated
Jun 3, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Minji Kong; Lori Pollock
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

We present a ProgSnap2-based dataset containing anonymized logs of over 34,000 programming events exhibited by 81 programming students in Scratch, a visual programming environment, during our designed study as described in the paper "Semi-Automatically Mining Students' Common Scratch Programming Behaviors." We also include a list of approx. 3100 mined sequential patterns of programming processes that are performed by at least 10% of the 62 of the 81 students who are novice programmers, and represent maximal patterns generated by the MG-FSM algorithm while allowing a gap of one programming event. README.txt — overview of the dataset and its propertiesmainTable.csv — main event table of the dataset holding rows of programming eventscodeState.csv — table holding XML representations of code snapshots at the time of each programming eventdatasetMetadata.csv — describes features of the datasetScratch-SeqPatterns.txt — list of sequential patterns mined from the Main Event Table

Search
Clear search
Close search
Google apps
Main menu