The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.
A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.
These detailed tables show sample sizes and population estimates from the 2011 National Survey on Drug Use and Health (NSDUH). Samples sizes and population estimates are provided by age group, gender, race/ethnicity, education level, employment status, geographic area, pregnancy status, college enrollment status, and probation/parole status.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Combined Locks population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Combined Locks across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Combined Locks was 3,654, a 0.11% decrease year-by-year from 2022. Previously, in 2022, Combined Locks population was 3,658, an increase of 0.83% compared to a population of 3,628 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Combined Locks increased by 1,198. In this period, the peak population was 3,658 in the year 2022. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Combined Locks Population by Year. You can refer the same here
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
These detailed tables show standard errors of sample sizes and population estimates pertaining to mental health from the 2011 National Survey on Drug Use and Health (NSDUH). Samples sizes and population estimates are provided by age group, gender, race/ethnicity, education level, employment status, poverty level, geographic area, insurance status.
These detailed tables show sample sizes and population estimates pertaining to mental health from the 2010 National Survey on Drug Use and Health (NSDUH). Samples sizes and population estimates are provided by age group, gender, race/ethnicity, education level, employment status, poverty level, geographic area, insurance status.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Two Creeks town population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Two Creeks town.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
These detailed tables show standard errors for sample sizes and population estimates from the 2012 National Survey on Drug Use and Health (NSDUH). Standard errors for samples sizes and population estimates are provided by age group, gender, race/ethnicity, education level, employment status, geographic area, pregnancy status, college enrollment status, and probation/parole status.
The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below).
The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.
APS Well-Being data
Since April 2011, the APS has included questions about personal and subjective well-being. The responses to these questions have been made available as annual sub-sets to the APS Person level files. It is important to note that the size of the achieved sample of the well-being questions within the dataset is approximately 165,000 people. This reduction is due to the well-being questions being only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. As a result some caution should be used when using analysis of responses to well-being questions at detailed geography areas and also in relation to any other variables where respondent numbers are relatively small. It is recommended that for lower level geography analysis that the variable UACNTY09 is used.
As well as annual datasets, three-year pooled datasets are available. When combining multiple APS datasets together, it is important to account for the rotational design of the APS and ensure that no person appears more than once in the multiple year dataset. This is because the well-being datasets are not designed to be longitudinal e.g. they are not designed to track individuals over time/be used for longitudinal analysis. They are instead cross-sectional, and are designed to use a cross-section of the population to make inferences about the whole population. For this reason, the three-year dataset has been designed to include only a selection of the cases from the individual year APS datasets, chosen in such a way that no individuals are included more than once, and the cases included are approximately equally spread across the three years. Further information is available in the 'Documentation' section below.
Secure Access APS Well-Being data
Secure Access datasets for the APS Well-Being include additional variables not included in either the standard End User Licence (EUL) versions (see under GN 33357) or the Special Licence (SL) access versions (see under GN 33376). Extra variables that typically can be found in the Secure Access version but not in the EUL or SL versions relate to:
This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Snowflake population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Snowflake. The dataset can be utilized to understand the population distribution of Snowflake by age. For example, using this dataset, we can identify the largest age group in Snowflake.
Key observations
The largest age group in Snowflake, AZ was for the group of age 10 to 14 years years with a population of 873 (14.10%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Snowflake, AZ was the 80 to 84 years years with a population of 48 (0.78%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Snowflake Population by Age. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset has been created by using the open-source code released by LNDS (Luxembourg National Data Service). It is meant to be an example of the dataset structure anyone can generate and personalize in terms of some fixed parameter, including the sample size. The file format is .csv, and the data are organized by individual profiles on the rows and their personal features on the columns. The information in the dataset has been generated based on the statistical information about the age-structure distribution, the number of populations over municipalities, the number of different nationalities present in Luxembourg, and salary statistics per municipality. The STATEC platform, the statistics portal of Luxembourg, is the public source we used to gather the real information that we ingested into our synthetic generation model. Other features like Date of birth, Social matricule, First name, Surname, Ethnicity, and physical attributes have been obtained by a logical relationship between variables without exploiting any additional real information. We are in compliance with the law in putting close to zero the risk of identifying a real person completely by chance.
As a source of animal and plant population data, the Global Population Dynamics Database (GPDD) is unrivalled. Nearly five thousand separate time series are available here. In addition to all the population counts, there are taxonomic details of over 1400 species. The type of data contained in the GPDD varies enormously, from annual counts of mammals or birds at individual sampling sites, to weekly counts of zooplankton and other marine fauna. The project commenced in October 1994, following discussions on ways in which the collaborating partners could make a practical and enduring contribution to research into population dynamics. A small team was assembled and, with assistance and advice from numerous interested parties we decided to construct the database using the popular Microsoft Access platform. After an initial design phase, the major task has been that of locating, extracting, entering and validating the data in all the various tables. Now, nearly 5000 individual datasets have been entered onto the GPDD. The Global Population Dynamics Database comprises six Tables of data and information. The tables are linked to each other as shown in the diagram shown in figure 3 of the GPDD User Guide (GPDD-User-Guide.pdf). Referential integrity is maintained through record ID numbers which are held, along with other information in the Main Table. It's structure obeys all the rules of a standard relational database.
Descriptive statistics for the healthy population sample (N = 40).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lebanon population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Lebanon across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Lebanon was 182, a 0.55% increase year-by-year from 2022. Previously, in 2022, Lebanon population was 181, a decline of 0% compared to a population of 181 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Lebanon decreased by 120. In this period, the peak population was 302 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lebanon Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
'Dataset2' associated with: Who Tweets with Their Location? Understanding the Relationship Between Demographic Characteristics and the Use of Geoservices and Geotagging on Twitter
Luke Sloan and Jeffrey Morgan.
Abstract copyright UK Data Service and data collection copyright owner. This is a mixed-methods data collection. This study used Respondent Driven Sampling (RDS) methodology, which is a sampling method designed to generate unbiased estimates of population characteristics for populations where a sampling frame is not available. It is a form of snowball or link-tracing sampling, where respondents are given coupons to recruit other members of the target population, and where respondents are rewarded for both participating and for recruiting others. In addition to variables of interest, data are collected on the number of members of the target population each participant knows. Estimation methods are then applied to account for the non-random sample selection in an attempt to generate unbiased estimates for the target population. In 2010, the researchers conducted an RDS study in a rural Ugandan population where total population data were available. The aim of this study was to evaluate whether RDS could generate representative data on a rural Ugandan population by comparing estimates from an RDS survey with total-population data. The data used to define the target population (male household heads) were available from an ongoing general population cohort of 25 villages in rural Masaka, Uganda covering an area of approximately 38km. Annually, households in the study villages are mapped and after obtaining consent, a total-population household census and an individual questionnaire are administered and blood taken for HIV-1 testing. A random sample of eligible men in the target population who were not recruited during the RDS study were also interviewed, using the same RDS questionnaire. Finally, 49 qualitative interviews (of which summaries have been deposited) were conducted with a range of people (men and women) including RDS participants and non-participants, and RDS interviewers. These data can be used to evaluate the RDS sampling method, and to test new RDS estimators. Further information may be found in the documentation and in the journal articles listed in the Publications section. Special Licence access and geographic data This data collection is subject to Special Licence access conditions (see Access section for details). Data are analysable at individual village level, and GPS point data are available for the villages and interview sites. Finer detail geographic variables may be available for certain research questions. If these are required, users should request this when making their Special Licence application. Main Topics: Quantitative data: demographic characteristics of the individual, including household composition, age, HIV status, tribe, religion, relationship between target population sample member and contacts, geographic data. Qualitative interview summaries: respondents' opinions of the study, the conduct of the research and the incentives used. Respondent Driven Sampling methods were used - see Abstract and documentation for details.
The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.