72 datasets found
  1. c

    Synthetic Unit and Area Level EU-Survey of Income and Living Conditions...

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tzavidis, N (2025). Synthetic Unit and Area Level EU-Survey of Income and Living Conditions Sample and Population Data, 2016-2019 [Dataset]. http://doi.org/10.5255/UKDA-SN-854788
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    University of Southampton
    Authors
    Tzavidis, N
    Time period covered
    Jan 1, 2016 - Mar 31, 2019
    Area covered
    Austria
    Variables measured
    Household
    Measurement technique
    The data are synthetically generated unit and area (district) level population and sample data. The use of synthetic data is for preventing disclosure issues with the real datasets. No survey or interviews are used in this case. Instead, data have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria to create a synthetic population of Austria. A sample is then selected from the population by using stratified simple random sampling within the Austrian districts.
    Description

    These are synthetically generated unit and area level population and sample data that can be used for testing model-based unit-level small area methods. To prevent disclosure issues the datasets have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria. The data include geographical identifies and can be used for fitting unit-level (Battese-Harter and Fuller type) models and area level models (Fay-Herriott- type) models. The datasets are part of the R package emdi. Examples of the use of the data can be found in the emdi manual available via https://cran.r-project.org/web/packages/emdi/emdi.pdf and in Kreutzmann et al. (2019)

    Kreutzmann, A. K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M., & Tzavidis, N. (2019). The R package emdi for the estimation and mapping of regional disaggregated indicators. Journal of Statistical Software, 91(7). https://doi.org/10.18637/jss.v091.i07

    Reliable statistics are crucial for policy relevant research. Small Area Estimation (SAE) methods generate robust reliable and consistent statistics at geographical scales for which survey data are either non-existent or too sparse to provide direct estimates of acceptable accuracy. The last decade has seen a rapid increase in the use of SAE. Statistical agencies and Governmental organisations are actively developing their own suites of estimates. In the UK the Office for National Statistics (ONS) has responded to user demands by producing estimates of average household income for wards and using SAE to answer queries from local authorities, policy advisers and government departments. The Welsh Assembly Government (WAG) is actively seeking to develop capacity for SAE. Public Health England produces SAEs of adolescent smoking and chronic kidney disease. Initial demands for small area statistics are now shifting to requirements for more complex statistics that extend beyond averages and proportions to encompass estimates of statistical distributions, multidimensional indicators (e.g. inequality and deprivation indicators) and methods for replacing the Census and adjusting Census results for undercount. These developing requirements pose significant methodological and applied real-world challenges. These challenges are deepened by different methodological approaches to SAE remaining largely unconnected, locked in disciplinary silos. The technical presentation of SAE also impedes more widespread uptake by social scientists and understanding by users. The proposed programme of work aims to (a) develop novel SAE methodologies to better serve the needs of users and producers of SAE (b) bridge different methodological approaches to SAE, (c) apply SAE for answering substantive questions in the social sciences and (d) 'Mainstream' SAE within the quantitative social sciences through the creation of methodologically comprehensive and accessible resources. The project comprises three work packages of methodological innovative research designed to deepen the understanding of SAE and achieve the aforementioned aims. The project will capitalise on a cross-disciplinary research team drawn together through an NCRM methodological network and reflecting a large part of the SAE expertise in the UK. Through long-standing collaborations with national and international agencies in the UK, Mexico and Brazil, which are placed at the centre of the project, we enjoy access to individual level secondary survey and Census data. Collaboration with key SAE users will ensure that the project remains relevant to user needs and that methodologies are used for expanding the set of small area statistics currently available. The involvement of international experts ensures the quality and relevance of the research. Substantive outputs will include SAEs of attributes of interest to users, including income, inequality, deprivation, health, ethnicity and a realistic pseudo-Census dataset for use by other researchers. The project will advance knowledge across disciplines in the social sciences including social statistics, applied economics, human geography and sociology. It will additionally impact on the production of official and Census statistics. The project is committed to adding value to NCRM's training and capacity building activities by developing new resources.

  2. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  3. d

    City of Tempe 2022 Community Survey Data

    • catalog.data.gov
    • data-academy.tempe.gov
    • +8more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). City of Tempe 2022 Community Survey Data [Dataset]. https://catalog.data.gov/dataset/city-of-tempe-2022-community-survey-data
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    Description and PurposeThese data include the individual responses for the City of Tempe Annual Community Survey conducted by ETC Institute. These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Community Survey results are used as indicators for several city performance measures. The summary data for each performance measure is provided as an open dataset for that measure (separate from this dataset). The performance measures with indicators from the survey include the following (as of 2022):1. Safe and Secure Communities1.04 Fire Services Satisfaction1.06 Crime Reporting1.07 Police Services Satisfaction1.09 Victim of Crime1.10 Worry About Being a Victim1.11 Feeling Safe in City Facilities1.23 Feeling of Safety in Parks2. Strong Community Connections2.02 Customer Service Satisfaction2.04 City Website Satisfaction2.05 Online Services Satisfaction Rate2.15 Feeling Invited to Participate in City Decisions2.21 Satisfaction with Availability of City Information3. Quality of Life3.16 City Recreation, Arts, and Cultural Centers3.17 Community Services Programs3.19 Value of Special Events3.23 Right of Way Landscape Maintenance3.36 Quality of City Services4. Sustainable Growth & DevelopmentNo Performance Measures in this category presently relate directly to the Community Survey5. Financial Stability & VitalityNo Performance Measures in this category presently relate directly to the Community SurveyMethodsThe survey is mailed to a random sample of households in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used. To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city. Additionally, demographic data were used to monitor the distribution of responses to ensure the responding population of each survey is representative of city population. Processing and LimitationsThe location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city. This data is the weighted data provided by the ETC Institute, which is used in the final published PDF report.The 2022 Annual Community Survey report is available on data.tempe.gov. The individual survey questions as well as the definition of the response scale (for example, 1 means “very dissatisfied” and 5 means “very satisfied”) are provided in the data dictionary.Additional InformationSource: Community Attitude SurveyContact (author): Wydale HolmesContact E-Mail (author): wydale_holmes@tempe.govContact (maintainer): Wydale HolmesContact E-Mail (maintainer): wydale_holmes@tempe.govData Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData Dictionary

  4. d

    Census of population and housing - one percent sample (2011) - Dataset -...

    • b2find.dkrz.de
    Updated Apr 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census of population and housing - one percent sample (2011) - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/4ccf9687-c699-59d0-a94c-4636393857de
    Explore at:
    Dataset updated
    Apr 30, 2023
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    The Census of Population and Housing is one of the most important surveys carried out by ISTAT. It is conducted every ten years from 1861, and the main objectives are: the count of the whole population and the recognition of its structural characteristics; updating and revision of civil registers; the definition of the legal population for juridical and electoral purposes; the collection of information about the number and structural characteristics of houses and buildings. The Census collects information about demographic and family structure of the population, the types of their households, their level of education, their employment status, and other informations on residents population. In 2011, for the first time, some information of socio-economic character were measured on a sample basis through the use of two types of questionnaire: one in a reduced form, with a few questions, including indispensable information for the production of the data required by the European Union with an high spatial detail, and one in complete form. In particular, Istat provides a 1% sample data (594,247 cases) released in two separate datasets: the first file (individui) refers to persons usually resident in private households and in Institutional households and the second one (alloggi) refers to living quarters. In urban areas with at least 20,000 inhabitants a sample was selected by a simple random sampling without replacement procedure of one third of the families. A complete version (long form) of the questionnaire has been sent to the sample, while a short version the questionnaire has been sent to all other inhabitants. web-based self-administered questionnaire (CAWI)

  5. N

    Two Creeks, Wisconsin Census Bureau Gender Demographics and Population...

    • neilsberg.com
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Two Creeks, Wisconsin Census Bureau Gender Demographics and Population Distribution Across Age Datasets [Dataset]. https://www.neilsberg.com/research/datasets/e1ad53a4-52cf-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Two Creeks
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Two Creeks town population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Two Creeks town.

    Content

    The dataset constitues the following two datasets across these two themes

    • Two Creeks, Wisconsin Population Breakdown by Gender
    • Two Creeks, Wisconsin Population Breakdown by Gender and Age

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  6. Annual Population Survey Three-Year Pooled Dataset, January 2020 - December...

    • beta.ukdataservice.ac.uk
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annual Population Survey Three-Year Pooled Dataset, January 2020 - December 2022 [Dataset]. https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=9119
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Office For National Statistics
    Description
    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    APS Well-Being Datasets
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.

    APS disability variables
    Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address

    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Latest edition information

    For the second edition (January 2024), a new version of the data file was deposited, with smoking variables added.

  7. d

    Community Survey: 2021 Random Sample Results

    • catalog.data.gov
    • data.bloomington.in.gov
    • +1more
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  8. Selected Demographic, Cultural, Educational, Labour Force and Income...

    • open.canada.ca
    • datasets.ai
    • +2more
    xml
    Updated Mar 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2022). Selected Demographic, Cultural, Educational, Labour Force and Income Characteristics (508), Mother Tongue (4) and Sex (3) for Population Having English, French or English and French as Mother Tongue, for Canada, Provinces, Territories, Census Divisions and Census Subdivisions, 2001 Census - 20% Sample Data [Dataset]. https://open.canada.ca/data/dataset/4ef72103-f92c-410f-9e4c-5d8df0424aa7
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada, French
    Description

    This table is part of a series of tables that present a portrait of Canada based on the various census topics. The tables range in complexity and levels of geography. Content varies from a simple overview of the country to complex cross-tabulations; the tables may also cover several censuses.

  9. Annual Population Survey Two-Year Longitudinal Dataset, January 2018 -...

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Survey Division Office For National Statistics (2024). Annual Population Survey Two-Year Longitudinal Dataset, January 2018 - December 2019 [Dataset]. http://doi.org/10.5255/ukda-sn-8840-1
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    DataCitehttps://www.datacite.org/
    Authors
    Social Survey Division Office For National Statistics
    Description

    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost.

    The APS allows for analysis to be carried out on detailed subgroups and below regional level. In recent years (particularly with the sample size of the LFS 5 quarter dataset reducing) there has been some interest in producing a two year APS longitudinal dataset to look at any trends that may occur over a year. The APS Two-Year Longitudinal Datasets, covering 2012/13 onwards, have been deposited as a result of this work. Person- and Household-level APS datasets are also available.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

  10. ACS-ED 2013-2017 Total Population: Economic Characteristics (DP03)

    • data-nces.opendata.arcgis.com
    • datasets.ai
    • +2more
    Updated Dec 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (2020). ACS-ED 2013-2017 Total Population: Economic Characteristics (DP03) [Dataset]. https://data-nces.opendata.arcgis.com/datasets/a84043b72e8c43aab8fa9d9a1f400d5c
    Explore at:
    Dataset updated
    Dec 14, 2020
    Dataset authored and provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    License

    https://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/

    Area covered
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  11. c

    Annual Population Survey Three-Year Pooled Dataset, January 2020 - December...

    • datacatalogue.cessda.eu
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Annual Population Survey Three-Year Pooled Dataset, January 2020 - December 2022 [Dataset]. http://doi.org/10.5255/UKDA-SN-9119-2
    Explore at:
    Dataset updated
    Nov 29, 2024
    Authors
    Office for National Statistics
    Time period covered
    Jan 1, 2020 - Dec 31, 2022
    Area covered
    United Kingdom
    Variables measured
    Individuals, National
    Measurement technique
    Face-to-face interview, Telephone interview
    Description

    Abstract copyright UK Data Service and data collection copyright owner.

    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    APS Well-Being Datasets
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.

    APS disability variables
    Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address

    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and...

  12. Annual Population Survey, January - December, 2022

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2024). Annual Population Survey, January - December, 2022 [Dataset]. http://doi.org/10.5255/ukda-sn-9069-4
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Office For National Statistics
    Description
    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    APS Well-Being Datasets
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.

    APS disability variables
    Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address

    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Latest edition information

    For the fourth edition (March 2024), the smoking variables CIGEVER, CIGNOW and CIGSMK16 were added to the dataset.

  13. i

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Social Affairs (2025). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://datacatalog.ihsn.org/catalog/5178
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Ministry of Social Affairs
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  14. ACS-ED 2014-2018 Total Population: Housing Characteristics (DP04)

    • s.cnmilf.com
    • catalog.data.gov
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2014-2018 Total Population: Housing Characteristics (DP04) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/acs-ed-2014-2018-total-population-housing-characteristics-dp04-efbf7
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public _domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data. -9 An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small. -8 An '-8' means that the estimate is not applicable or not available. -6 A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution. -5 A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. -3 A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate. -2 A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  15. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/cd10009e-a79f-4de5-a12c-87bb5b499e9f/metadata/FGDC-STD-001-1998.html
    Explore at:
    json(5), gml(5), xls(5), geojson(5), kml(5), zip(1), csv(5), shp(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2017
    Area covered
    New Mexico, West Bounding Coordinate -109.05017 East Bounding Coordinate -103.00196 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.33217
    Description

    A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico counties). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. As in the decennial census, strict confidentiality laws protect all information that could be used to identify individuals or households.The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. While each full Data Profile contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by New Mexico county boundaries.

  16. ACS-ED 2014-2018 Total Population: Demographic Characteristics (DP05)

    • data-nces.opendata.arcgis.com
    • catalog.data.gov
    • +1more
    Updated Sep 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (2020). ACS-ED 2014-2018 Total Population: Demographic Characteristics (DP05) [Dataset]. https://data-nces.opendata.arcgis.com/datasets/1f97febd50f64c178a72872f7d5dfcd8
    Explore at:
    Dataset updated
    Sep 8, 2020
    Dataset authored and provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    License

    https://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/

    Area covered
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

    -9

    An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.

    -8

    An '-8' means that the estimate is not applicable or not available.

    -6

    A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.

    -5

    A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.

    -3

    A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.

    -2

    A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  17. d

    Annual Population Survey, July 2005 - June 2006 - Dataset - B2FIND

    • b2find.dkrz.de
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annual Population Survey, July 2005 - June 2006 - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/a51aa0e5-ee9c-5bf2-b713-3af4011d3d68
    Explore at:
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.Occupation data for 2021 and 2022The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022APS Well-Being DatasetsFrom 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.APS disability variablesOver time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage. End User Licence and Secure Access APS dataUsers should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to: age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family nationality and country of origin geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district health: including main health problem, and current and past health problems education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from system variables: including week number when interview took place and number of households at address The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements. The Special Licence version of the APS July 2005 - June 2006 is held at the UK Data Archive under SN 5572. For the fifth edition (May 2015) an updated version of the data was deposited, weighted to 2014 population figures (based on Census 2011). The new weighting variable is PWTA14. An updated APS user guide is also available. Main Topics:Topics covered include: household composition and relationships, housing tenure, nationality, ethnicity and residential history, employment and training (including government schemes), workplace and location, job hunting, educational background and qualifications. Many of the variables included in the survey are the same as those in the LFS. Multi-stage stratified random sample Face-to-face interview Telephone interview 2005 2006 ACADEMIC ACHIEVEMENT ADVANCED LEVEL EXAM... ADVANCED SUPPLEMENT... AGE APPLICATION FOR EMP... APPOINTMENT TO JOB ATTITUDES BONUS PAYMENTS BUSINESS AND TECHNO... BUSINESSES CARDIOVASCULAR DISE... CARE OF DEPENDANTS CERTIFICATE OF SECO... CERTIFICATE OF SIXT... CHILDREN CHRONIC ILLNESS CITY AND GUILDS OF ... COHABITATION CONDITIONS OF EMPLO... DEBILITATIVE ILLNESS DEGREES DEPRESSION DIABETES DIGESTIVE SYSTEM DI... DISABILITIES Demography population ECONOMIC ACTIVITY EDUCATIONAL BACKGROUND EDUCATIONAL CERTIFI... EDUCATIONAL COURSES EMPLOYEES EMPLOYER SPONSORED ... EMPLOYMENT EMPLOYMENT HISTORY EMPLOYMENT PROGRAMMES ENDOCRINE DISORDERS EPILEPSY ETHNIC GROUPS FAMILIES FAMILY MEMBERS FIELDS OF STUDY FULL TIME EMPLOYMENT FURNISHED ACCOMMODA... GENDER GENERAL CERTIFICATE... GENERAL NATIONAL VO... GENERAL SCOTTISH VO... HEADS OF HOUSEHOLD HEALTH HEARING IMPAIRMENTS HIGHER EDUCATION HIGHER NATIONAL CER... HOME BUYING HOME OWNERSHIP HOURS OF WORK HOUSEHOLDS HOUSING HOUSING TENURE INCOME INDUSTRIES JOB CHANGING JOB HUNTING JOB SEEKER S ALLOWANCE LANDLORDS LEARNING DISABILITIES Labour and employment MANAGERS MARITAL STATUS MENTAL DISORDERS MUSCULOSKELETAL DIS... NATIONAL IDENTITY NATIONAL VOCATIONAL... NATIONALITY NERVOUS SYSTEM DISE... OCCUPATIONAL QUALIF... OCCUPATIONS ORDINARY LEVEL EXAM... ORDINARY NATIONAL C... OVERTIME PART TIME COURSES PART TIME EMPLOYMENT PLACE OF RESIDENCE PRIVATE SECTOR PUBLIC SECTOR QUALIFICATIONS RECRUITMENT REDUNDANCY REDUNDANCY PAY RELIGIOUS AFFILIATION RENTED ACCOMMODATION RESIDENTIAL MOBILITY RESPIRATORY TRACT D... ROYAL SOCIETY OF AR... SCOTTISH CERTIFICAT... SCOTTISH VOCATIONAL... SCOTTISH VOCATIONAL... SELF EMPLOYED SICK LEAVE SKIN DISEASES SOCIAL HOUSING SOCIAL SECURITY BEN... SOCIO ECONOMIC STATUS SPEECH IMPAIRMENTS STATE RETIREMENT PE... STUDENTS SUBSIDIARY EMPLOYMENT SUPERVISORS SUPERVISORY STATUS TAX RELIEF TEMPORARY EMPLOYMENT TERMINATION OF SERVICE TIED HOUSING TRAINING TRAINING COURSES UNEMPLOYED UNEMPLOYMENT UNFURNISHED ACCOMMO... VISION IMPAIRMENTS VOCATIONAL EDUCATIO... WAGES WELSH LANGUAGE WORKING CONDITIONS WORKPLACE vital statistics an...

  18. t

    CommunitySurvey2023weighted

    • data-academy.tempe.gov
    • performance.tempe.gov
    • +4more
    Updated Jan 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). CommunitySurvey2023weighted [Dataset]. https://data-academy.tempe.gov/datasets/communitysurvey2023weighted
    Explore at:
    Dataset updated
    Jan 2, 2024
    Dataset authored and provided by
    City of Tempe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data include the individual responses for the City of Tempe Annual Community Survey conducted by ETC Institute. This dataset has two layers and includes both the weighted data and unweighted data. Weighting data is a statistical method in which datasets are adjusted through calculations in order to more accurately represent the population being studied. The weighted data are used in the final published PDF report.These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Community Survey results are used as indicators for several city performance measures. The summary data for each performance measure is provided as an open dataset for that measure (separate from this dataset). The performance measures with indicators from the survey include the following (as of 2023):1. Safe and Secure Communities1.04 Fire Services Satisfaction1.06 Crime Reporting1.07 Police Services Satisfaction1.09 Victim of Crime1.10 Worry About Being a Victim1.11 Feeling Safe in City Facilities1.23 Feeling of Safety in Parks2. Strong Community Connections2.02 Customer Service Satisfaction2.04 City Website Satisfaction2.05 Online Services Satisfaction Rate2.15 Feeling Invited to Participate in City Decisions2.21 Satisfaction with Availability of City Information3. Quality of Life3.16 City Recreation, Arts, and Cultural Centers3.17 Community Services Programs3.19 Value of Special Events3.23 Right of Way Landscape Maintenance3.36 Quality of City Services4. Sustainable Growth & DevelopmentNo Performance Measures in this category presently relate directly to the Community Survey5. Financial Stability & VitalityNo Performance Measures in this category presently relate directly to the Community SurveyMethods:The survey is mailed to a random sample of households in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used. To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city. Additionally, demographic data were used to monitor the distribution of responses to ensure the responding population of each survey is representative of city population. Processing and Limitations:The location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city. The weighted data are used by the ETC Institute, in the final published PDF report.The 2023 Annual Community Survey report is available on data.tempe.gov or by visiting https://www.tempe.gov/government/strategic-management-and-innovation/signature-surveys-research-and-dataThe individual survey questions as well as the definition of the response scale (for example, 1 means “very dissatisfied” and 5 means “very satisfied”) are provided in the data dictionary.Additional InformationSource: Community Attitude SurveyContact (author): Adam SamuelsContact E-Mail (author): Adam_Samuels@tempe.govContact (maintainer): Contact E-Mail (maintainer): Data Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData Dictionary

  19. U

    Population by Nationality

    • data.ubdc.ac.uk
    • data.wu.ac.at
    xls
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Population by Nationality [Dataset]. https://data.ubdc.ac.uk/dataset/population-nationality
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Description

    This table shows resident population of London broken down by nationality, showing data for London's largest communities in 2004, and 2008 to 2012.

    Also shows the percentage of the UK community that live in London.
    The Annual Population Survey (APS) sampled around 325,000 people in the UK (around 28,000 in London). As such all figures must be treated with some caution. 95% confidence interval levels are provided.

    All numbers based on fewer than 50 surveys have been suppressed.
    Numbers have been rounded to the nearest thousand.

    The APS is the only inter-censal data source that can provide estimates of the population stock by nationality. The data have a range of limitations, particularly in relation to their poor coverage of short-term migrants or recent arrivals. They also struggle to provide estimates for small migrant populations due to small sample sizes.
    Information about Londoners by Country of Birth using APS data, can be found in DMAG Briefing 2008-05 http://legacy.london.gov.uk/gla/publications/factsandfigures/dmag-briefing-2008-05.pdf

    ONS website

  20. a

    Population (by Atlanta Neighborhood Statistical Areas) 2019

    • hub.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Population (by Atlanta Neighborhood Statistical Areas) 2019 [Dataset]. https://hub.arcgis.com/datasets/419ebd0e8d85497baeb6cfd648780377
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tzavidis, N (2025). Synthetic Unit and Area Level EU-Survey of Income and Living Conditions Sample and Population Data, 2016-2019 [Dataset]. http://doi.org/10.5255/UKDA-SN-854788

Synthetic Unit and Area Level EU-Survey of Income and Living Conditions Sample and Population Data, 2016-2019

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 25, 2025
Dataset provided by
University of Southampton
Authors
Tzavidis, N
Time period covered
Jan 1, 2016 - Mar 31, 2019
Area covered
Austria
Variables measured
Household
Measurement technique
The data are synthetically generated unit and area (district) level population and sample data. The use of synthetic data is for preventing disclosure issues with the real datasets. No survey or interviews are used in this case. Instead, data have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria to create a synthetic population of Austria. A sample is then selected from the population by using stratified simple random sampling within the Austrian districts.
Description

These are synthetically generated unit and area level population and sample data that can be used for testing model-based unit-level small area methods. To prevent disclosure issues the datasets have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria. The data include geographical identifies and can be used for fitting unit-level (Battese-Harter and Fuller type) models and area level models (Fay-Herriott- type) models. The datasets are part of the R package emdi. Examples of the use of the data can be found in the emdi manual available via https://cran.r-project.org/web/packages/emdi/emdi.pdf and in Kreutzmann et al. (2019)

Kreutzmann, A. K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M., & Tzavidis, N. (2019). The R package emdi for the estimation and mapping of regional disaggregated indicators. Journal of Statistical Software, 91(7). https://doi.org/10.18637/jss.v091.i07

Reliable statistics are crucial for policy relevant research. Small Area Estimation (SAE) methods generate robust reliable and consistent statistics at geographical scales for which survey data are either non-existent or too sparse to provide direct estimates of acceptable accuracy. The last decade has seen a rapid increase in the use of SAE. Statistical agencies and Governmental organisations are actively developing their own suites of estimates. In the UK the Office for National Statistics (ONS) has responded to user demands by producing estimates of average household income for wards and using SAE to answer queries from local authorities, policy advisers and government departments. The Welsh Assembly Government (WAG) is actively seeking to develop capacity for SAE. Public Health England produces SAEs of adolescent smoking and chronic kidney disease. Initial demands for small area statistics are now shifting to requirements for more complex statistics that extend beyond averages and proportions to encompass estimates of statistical distributions, multidimensional indicators (e.g. inequality and deprivation indicators) and methods for replacing the Census and adjusting Census results for undercount. These developing requirements pose significant methodological and applied real-world challenges. These challenges are deepened by different methodological approaches to SAE remaining largely unconnected, locked in disciplinary silos. The technical presentation of SAE also impedes more widespread uptake by social scientists and understanding by users. The proposed programme of work aims to (a) develop novel SAE methodologies to better serve the needs of users and producers of SAE (b) bridge different methodological approaches to SAE, (c) apply SAE for answering substantive questions in the social sciences and (d) 'Mainstream' SAE within the quantitative social sciences through the creation of methodologically comprehensive and accessible resources. The project comprises three work packages of methodological innovative research designed to deepen the understanding of SAE and achieve the aforementioned aims. The project will capitalise on a cross-disciplinary research team drawn together through an NCRM methodological network and reflecting a large part of the SAE expertise in the UK. Through long-standing collaborations with national and international agencies in the UK, Mexico and Brazil, which are placed at the centre of the project, we enjoy access to individual level secondary survey and Census data. Collaboration with key SAE users will ensure that the project remains relevant to user needs and that methodologies are used for expanding the set of small area statistics currently available. The involvement of international experts ensures the quality and relevance of the research. Substantive outputs will include SAEs of attributes of interest to users, including income, inequality, deprivation, health, ethnicity and a realistic pseudo-Census dataset for use by other researchers. The project will advance knowledge across disciplines in the social sciences including social statistics, applied economics, human geography and sociology. It will additionally impact on the production of official and Census statistics. The project is committed to adding value to NCRM's training and capacity building activities by developing new resources.

Search
Clear search
Close search
Google apps
Main menu