91 datasets found
  1. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  2. Data for workshop: "Introduction to Geospatial Raster and Vector Data with...

    • figshare.com
    zip
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Nattino (2023). Data for workshop: "Introduction to Geospatial Raster and Vector Data with Python" - Wildfires in Rhodes [Dataset]. http://doi.org/10.6084/m9.figshare.24270796.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 9, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Francesco Nattino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Support dataset for the workshop: "Introduction to Geospatial Raster and Vector Data with Python", from the Carpentries Incubator. The focus will be the wildfires that affected Rhodes in July 2023.

  3. d

    Virtual GDAL/OGR Geospatial Data Format

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Cera (2021). Virtual GDAL/OGR Geospatial Data Format [Dataset]. https://search.dataone.org/view/sha256%3Adfd4f7ff6329cd6e6f3c409bcfa7a8dd73c9f51f4c652596ab07ecbec048ba66
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Tim Cera
    Description

    The GDAL/OGR libraries are open-source, geo-spatial libraries that work with a wide range of raster and vector data sources. One of many impressive features of the GDAL/OGR libraries is the ViRTual (VRT) format. It is an XML format description of how to transform raster or vector data sources on the fly into a new dataset. The transformations include: mosaicking, re-projection, look-up table (raster), change data type (raster), and SQL SELECT command (vector). VRTs can be used by GDAL/OGR functions and utilities as if they were an original source, even allowing for chaining of functionality, for example: have a VRT mosaic hundreds of VRTs that use look-up tables to transform original GeoTiff files. We used the VRT format for the presentation of hydrologic model results, allowing for thousands of small VRT files representing all components of the monthly water balance to be transformations of a single land cover GeoTiff file.

    Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/

  4. Vector datasets for workshop "Introduction to Geospatial Raster and Vector...

    • figshare.com
    Updated Oct 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Avery (2022). Vector datasets for workshop "Introduction to Geospatial Raster and Vector Data with Python" [Dataset]. http://doi.org/10.6084/m9.figshare.21273837.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ryan Avery
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cadaster data from PDOK used to illustrate the use of geopandas and shapely, geospatial python packages for manipulating vector data. The brpgewaspercelen_definitief_2020.gpkg file has been subsetted in order to make the download manageable for workshops. Other datasets are copies of those available from PDOK.

  5. Natural Earth: Public Domain Vector and Raster Data

    • data.wu.ac.at
    zip
    Updated Oct 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Geospatial Data (2013). Natural Earth: Public Domain Vector and Raster Data [Dataset]. https://data.wu.ac.at/schema/datahub_io/M2QwNTAwYzEtMWQ3Yy00NDE4LWEyNTAtYWY5MTZjZDIyZmFh
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 10, 2013
    Dataset provided by
    Open Geospatial Consortiumhttps://www.ogc.org/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

    Large scale data, 1:10m

    The most detailed. Suitable for making zoomed-in maps of countries and regions. Show the world on a large wall poster.

    Medium scale data, 1:50m

    Suitable for making zoomed-out maps of countries and regions. Show the world on a tabloid size page.

    Small scale data, 1:110m

    Suitable for schematic maps of the world on a postcard or as a small locator globe.

  6. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  7. d

    Landcover Raster Data (2010) – 3ft Resolution

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Landcover Raster Data (2010) – 3ft Resolution [Dataset]. https://catalog.data.gov/dataset/landcover-raster-data-2010-3ft-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    High resolution land cover data set for New York City. This is the 3ft version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.

  8. Raster dataset for workshop "Introduction to Geospatial Raster and Vector...

    • figshare.com
    application/x-gzip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Nattino (2023). Raster dataset for workshop "Introduction to Geospatial Raster and Vector Data with Python" [Dataset]. http://doi.org/10.6084/m9.figshare.20146919.v1
    Explore at:
    application/x-gzipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Francesco Nattino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Collection of Sentinel-2 satellite scenes employed in the workshop "Introduction to Geospatial Raster and Vector Data with Python". Metadata is provided following the SpatioTemporal Asset Catalog (STAC) specification.

  9. e

    Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso...

    • envidat.ch
    • data.europa.eu
    json, not available +1
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ionuț Iosifescu Enescu (2025). Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso with Shaded Relief and Water) [Dataset]. http://doi.org/10.16904/envidat.68
    Explore at:
    not available, json, xmlAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Ionuț Iosifescu Enescu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    WSL
    Description

    The attached data are some large GIS raster files (GeoTIFFs) made with Natural Earth data. Natural Earth is a free vector and raster map data @ naturalearthdata.com. The data used for creating these large files was the "Cross Blended Hypso with Shaded Relief and Water". Data was concatenated to achieve larger and larger files. Internal pyramids were created, in order that the files can be opened easily in a GIS software such as QGIS or by a (future) GIS data visualisation module integrated in EnviDat. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com

  10. a

    VCGI Training Data: Vector, raster, gpx, and tabular data referred to in...

    • hub.arcgis.com
    • geodata.vermont.gov
    Updated Oct 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2016). VCGI Training Data: Vector, raster, gpx, and tabular data referred to in VCGI's training manuals [Dataset]. https://hub.arcgis.com/documents/98177220f1d240dc866589a97fc8244d
    Explore at:
    Dataset updated
    Oct 22, 2016
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    VCGI Training Data: Vector, raster, gpx, and tabular data referred to in VCGI's training manuals

  11. U

    Lidar-derived closed depression vector data and density raster in karst...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Jul 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cox Cheyenne L; Doctor Daniel H (2021). Lidar-derived closed depression vector data and density raster in karst areas of Monroe County, West Virginia [Dataset]. http://doi.org/10.5066/P9O85K6T
    Explore at:
    Dataset updated
    Jul 19, 2021
    Dataset provided by
    United States Geological Survey
    Authors
    Cox Cheyenne L; Doctor Daniel H
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2018 - 2021
    Area covered
    Monroe County, West Virginia
    Description

    Monroe County in southeastern West Virginia hosts world-class karst within carbonate units of Mississippian and Ordovician age. Lidar-derived elevation data acquired in late December of 2016 were used to create a 3-meter resolution working digital elevation model (DEM), from which surface depressions were identified using a semi-automated workflow in ArcGIS®. Depressions in the automated inventory were systematically checked by a geologist within a grid of 1.5 square kilometer tiles using aerial imagery, lidar-derived imagery, and 3D viewing of the lidar imagery. Distinguishing features such as modification by human activities or hydrological significance (stream sink, ephemerally ponded, etc.) were noted wherever relevant to a particular depression. Relative confidence in depression identification was provided and determined by whether the depression was visible in the lidar imagery, aerial imagery, or both. Statistics on the geometric morphometry of each depression were calculated in ...

  12. G

    Geospatial Data Provider Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Nov 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Provider Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-provider-492762
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Nov 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global geospatial data market is poised for significant expansion, projected to reach $3,788 million and grow at a Compound Annual Growth Rate (CAGR) of 6.1% during the forecast period of 2025-2033. This robust growth is propelled by an increasing demand for location-based intelligence across diverse industries. Key drivers include the proliferation of IoT devices generating vast amounts of location data, advancements in satellite imagery and remote sensing technologies, and the growing adoption of AI and machine learning for analyzing complex geospatial datasets. The enterprise sector is emerging as a dominant application segment, leveraging geospatial data for enhanced decision-making in areas such as logistics, urban planning, real estate, and natural resource management. Furthermore, government agencies are increasingly utilizing this data for public safety, infrastructure development, and environmental monitoring. The market is characterized by a bifurcated segmentation between vector data, representing discrete geographic features, and raster data, depicting continuous phenomena like elevation or temperature. Both segments are experiencing healthy growth, driven by specialized applications and analytical needs. Emerging trends include the rise of real-time geospatial data streams, the increasing importance of high-resolution imagery, and the integration of AI-powered analytics to extract deeper insights. However, challenges such as data privacy concerns, high infrastructure costs for data acquisition and processing, and the need for skilled professionals to interpret and utilize the data effectively may pose some restraints. Despite these hurdles, the overwhelming benefits of actionable location intelligence are expected to drive sustained market expansion, with North America and Europe currently leading in adoption, followed closely by the rapidly growing Asia Pacific region. This in-depth report delves into the dynamic and rapidly evolving Geospatial Data Provider market, offering a comprehensive analysis from the historical period of 2019-2024 through to a robust forecast extending to 2033. With the Base Year and Estimated Year set at 2025, the report provides an up-to-the-minute snapshot and a forward-looking perspective on this critical industry. The market size, valued in the millions, is meticulously dissected across various segments, companies, and industry developments.

  13. U

    Raster and vector geospatial data of interpolated groundwater level altitude...

    • data.usgs.gov
    • catalog.data.gov
    Updated Nov 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Kearns (2018). Raster and vector geospatial data of interpolated groundwater level altitude associated with a groundwater-level map of Fauquier County, Virginia, October - November 2018 [Dataset]. http://doi.org/10.5066/P9JM7GYZ
    Explore at:
    Dataset updated
    Nov 2, 2018
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Matthew Kearns
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Oct 29, 2018 - Nov 2, 2018
    Area covered
    Fauquier County, Virginia
    Description

    This dataset is the product of a geospatial interpolation using groundwater-level data obtained from a U.S. Geological Survey (USGS) synoptic survey of 129 groundwater wells in Fauquier County, VA from October 29 through November 2, 2018 and selected points from the National Hydrography Dataset (NHD). Methodology is detailed in USGS SIR 2022-5014 "Groundwater-level contour map of Fauquier County, VA, October - November 2018." Files include a continuous raster surface of groundwater-level altitudes at a horizontal resolution of 30 meters and vector lines of discrete groundwater-level altitude contours.

  14. w

    Gridded Soil Survey Geographic (gSSURGO-30) Database for the Conterminous...

    • data.wu.ac.at
    • catalog.data.gov
    html
    Updated Oct 2, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture (2014). Gridded Soil Survey Geographic (gSSURGO-30) Database for the Conterminous United States - 30 meter [Dataset]. https://data.wu.ac.at/schema/data_gov/MzIxNTIwZDgtNDFkYS00MWMzLWEzYTktNTFmYWQ2NGVlNjRk
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 2, 2014
    Dataset provided by
    Department of Agriculture
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.

    The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 30 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.

    The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.

    The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).

  15. e

    SM 1:5000 cadastral component raster data - Jevíčko 5-9

    • data.europa.eu
    Updated Dec 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). SM 1:5000 cadastral component raster data - Jevíčko 5-9 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-jevi59?locale=en
    Explore at:
    Dataset updated
    Dec 17, 2012
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  16. Tiled vector data model for the geographical features of symbolized maps

    • plos.figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lin Li; Wei Hu; Haihong Zhu; You Li; Hang Zhang (2023). Tiled vector data model for the geographical features of symbolized maps [Dataset]. http://doi.org/10.1371/journal.pone.0176387
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Lin Li; Wei Hu; Haihong Zhu; You Li; Hang Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and ‘addition’ (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.

  17. N

    Land Cover Raster Data (2017) – 6in Resolution

    • data.cityofnewyork.us
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Dec 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Technology and Innovation (OTI) (2018). Land Cover Raster Data (2017) – 6in Resolution [Dataset]. https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Office of Technology and Innovation (OTI)
    Description

    A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks)

    For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub.

    To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md

  18. BOREAS Forest Cover Data Layers Over the SSA-MSA in Raster Format

    • data.nasa.gov
    • s.cnmilf.com
    • +7more
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). BOREAS Forest Cover Data Layers Over the SSA-MSA in Raster Format [Dataset]. https://data.nasa.gov/dataset/boreas-forest-cover-data-layers-over-the-ssa-msa-in-raster-format-0d4a4
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This data set was prepared by BORIS staff by processing the original vector data into raster files. The original data were received as ARC/INFO coverages or as export files from SERM. The data include information on forest parameters for the BOREAS SSA MSA. The data are stored in binary, image format files.

  19. a

    Corine Land Cover 2006 raster

    • hub.arcgis.com
    Updated Feb 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre d'enseignement Saint-Joseph de Chimay (2017). Corine Land Cover 2006 raster [Dataset]. https://hub.arcgis.com/datasets/f991cef8027d433d9be3d058e0e52880_1
    Explore at:
    Dataset updated
    Feb 20, 2017
    Dataset authored and provided by
    Centre d'enseignement Saint-Joseph de Chimay
    Area covered
    Description

    This map service provides dynamic access to data from the Corine Land Cover 2006 inventory. Data are available as 100 meter pixel raster images at small scales up to 1:800.000 and at higher scales as vectors. CORINE Land Cover (CLC) is a geographic land cover/land use database encompassing most of the countries of Europe. In 1985 the Corine programme was initiated in the European Union. Corine means 'coordination of information on the environment' and it was a prototype project working on many different environmental issues. The Corine databases and several of its programme have been taken over by the EEA. One of these is an inventory of land cover in 44 classes organised hierarchically in three levels, and presented as a cartographic product, at a scale of 1:100 000. The first level (5 classes) corresponds to the main categories of the land cover/land use (artificial areas, agricultural land, forests and semi-natural areas, wetlands, water surfaces). The second level (15 classes) covers physical and physiognomic entities at a higher level of detail (urban zones, forests, lakes, etc), finally level 3 is composed of 44 classes. CLC was elaborated based on the visual interpretation of satellite images (SPOT, LANDSAT TM and MSS). Ancillary data (aerial photographs, topographic or vegetation maps, statistics, local knowledge) were used to refine interpretation and the assignment of the territory into the categories of the CORINE Land Cover nomenclature. The smallest surfaces mapped (minimum mapping units) correspond to 25 hectares. Linear features less than 100 m in width are not considered. The scale of the output product was fixed at 1:100.000. Thus, the location precision of the CLC database is 100 m. This database is operationally available for most areas of Europe. Original inventories, based on and interpreted from satellite imagery as well as ancillary information sources, are stored within national institutions. One of the major tasks undertaken in the framework of the Corine programme has been the establishment of a computerised inventory on the land cover. Data on land cover is necessary for the environment policy as well as for other policies such as regional development and agriculture. At the same time it provides one of the basic inputs for the production of more complex information on other themes (soil erosion, pollutant emission into the air by the vegetation, etc.). The objectives of the land cover project are: - to provide those responsible for and interested in the European policy on the environment with quantitative data on land cover, consistent and comparable across Europe. Geographic coverage: Albania, Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Iceland, Ireland, Italy, Kosovo under UNSCR 1244/99, Latvia, Liechtenstein, Lithuania, Luxembourg, Macedonia the former Yugoslavian Republic of, Malta, Montenegro, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom Corine Land Cover 2006 seamless vector data - version 16 (04/2012) can be accessed here: http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-2

  20. f

    Data layer and source, raster/vector, value range/categories (number of...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Sep 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Hao-Ning; Huang, Li-Ya; Zeng, Zan; Gao, Shan; Wang, Xiao-Long (2021). Data layer and source, raster/vector, value range/categories (number of subcategories in brackets), and specification of the unit of measurement/impact (proxy). [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000819420
    Explore at:
    Dataset updated
    Sep 10, 2021
    Authors
    Wang, Hao-Ning; Huang, Li-Ya; Zeng, Zan; Gao, Shan; Wang, Xiao-Long
    Description

    Data layer and source, raster/vector, value range/categories (number of subcategories in brackets), and specification of the unit of measurement/impact (proxy).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896

Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 7, 2021
Dataset provided by
ESS-DIVE
Authors
Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
Time period covered
Jan 1, 2008 - Jan 1, 2012
Area covered
Description

This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

Search
Clear search
Close search
Google apps
Main menu