Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
sheet1 raw data sheet 2 base line sheet3 subgroup raw data sheet4 results of statistical analysis
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is associated with the publication of the manuscript "Nightlife as Counterspace: Potentials of Nightlife for Social Wellbeing" in Annals of Leisure Research. It contains a data set on the (german) standardized survey that is directly cited in the manuscript, the Cluster analysis, as well as the german original transcripted records of the cited group discussions.
Facebook
Twittera = 1 missing data point.b = 2 missing data points.c = 3 missing data points.Summary statistics for the study sample (raw data, not log transformed).
Facebook
TwitterRaw data values for each dog (numbered 1 – X) shown for each figure, which are separated into distinct sheet tabs. Next to each dataset, descriptive statistics are provided including the 95% CI. (XLSX)
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
TwitterRaw statistical data underpinning the second two PhD research objectives for the thesis entitled "Money doesn’t grow on trees: How to increase funding for the delivery of urban forest ecosystem services?". These relate to the interviews with 30 Southampton businesses, and choice experiment survey with 415 Southampton citizens.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data analysis raw data in a PDF file
Facebook
TwitterSequencing statistics of the raw data.
Facebook
TwitterDescriptive statistics (raw data).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Raw materials price index, by North American Product Classification System (NAPCS)
Facebook
TwitterThe data for every graph in both the main text and supplementary material is listed within individual sheets. Sheets are labeled by the Figure number and panel. (XLSX)
Facebook
TwitterThe main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.
Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty
National
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.
To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.
It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.
Face-to-face [f2f]
List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form
Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results
Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Raw data and descriptive statistic data of the market survey performed with the Add-In XLSTAT 2009.1.02 is provided as Excel-file (CSV). The data include file name, sample name, area, calculated N2O amounts, test result and statistical values.
Facebook
TwitterInformation on data sources for field analyzer manuscript calculations. This dataset is not publicly accessible because: This data was not generated by EPA, but rather used by EPA researchers to calculate basic statistics (R square and slope), as part of this literature review. It can be accessed through the following means: These two old conference proceedings are available in book volumes that can be found in libraries, with page numbers as specified below: - Argent, V.A., Southall, J.M. and D'Costa, E. (1994) Analysis of water for lead and copper using disposable sensor technology. American Water Works Association – Annual Conference, pp. 43-54, New York, New York. - Wiese, P.M. (1989) Monitoring method for lead in first-draw drinking water samples. American Water Works Association - Annual Conference and Exposition, pp. 1309-1313, Los Angeles, California. Format: Data from three tables in two old conference proceedings were used to calculate basic statistics (R square and slope): - Table 2 and 4 in Proceeding "Argent, V.A., Southall, J.M. and D'Costa, E. (1994) Analysis of water for lead and copper using disposable sensor technology. American Water Works Association – Annual Conference, pp. 43-54, New York, New York." - Table 2 in Proceeding "Wiese, P.M. (1989) Monitoring method for lead in first-draw drinking water samples. American Water Works Association - Annual Conference and Exposition, pp. 1309-1313, Los Angeles, California.". This dataset is associated with the following publication: Dore, E., D. Lytle, L. Wasserstrom, J. Swertfeger, and S. Triantafyllidou. Field Analyzers for Lead Quantification in Drinking Water Samples. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY. CRC Press LLC, Boca Raton, FL, USA, 50(20): 999-999, (2020).
Facebook
TwitterTHE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS
The Palestinian Central Bureau of Statistics (PCBS) carried out four rounds of the Labor Force Survey 2017 (LFS). The survey rounds covered a total sample of about 23,120 households (5,780 households per quarter).
The main objective of collecting data on the labour force and its components, including employment, unemployment and underemployment, is to provide basic information on the size and structure of the Palestinian labour force. Data collected at different points in time provide a basis for monitoring current trends and changes in the labour market and in the employment situation. These data, supported with information on other aspects of the economy, provide a basis for the evaluation and analysis of macro-economic policies.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.
Covering a representative sample on the region level (West Bank, Gaza Strip), the locality type (urban, rural, camp) and the governorates.
1- Household/family. 2- Individual/person.
The survey covered all Palestinian households who are a usual residence of the Palestinian Territory.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS
The methodology was designed according to the context of the survey, international standards, data processing requirements and comparability of outputs with other related surveys.
---> Target Population: It consists of all individuals aged 10 years and Above and there are staying normally with their households in the state of Palestine during 2017.
---> Sampling Frame: The sampling frame consists of the master sample, which was updated in 2011: each enumeration area consists of buildings and housing units with an average of about 124 households. The master sample consists of 596 enumeration areas; we used 494 enumeration areas as a framework for the labor force survey sample in 2017 and these units were used as primary sampling units (PSUs).
---> Sampling Size: The estimated sample size is 5,780 households in each quarter of 2017.
---> Sample Design The sample is two stage stratified cluster sample with two stages : First stage: we select a systematic random sample of 494 enumeration areas for the whole round ,and we excluded the enumeration areas which its sizes less than 40 households. Second stage: we select a systematic random sample of 16 households from each enumeration area selected in the first stage, se we select a systematic random of 16 households of the enumeration areas which its size is 80 household and over and the enumeration areas which its size is less than 80 households we select systematic random of 8 households.
---> Sample strata: The population was divided by: 1- Governorate (16 governorate) 2- Type of Locality (urban, rural, refugee camps).
---> Sample Rotation: Each round of the Labor Force Survey covers all of the 494 master sample enumeration areas. Basically, the areas remain fixed over time, but households in 50% of the EAs were replaced in each round. The same households remain in the sample for two consecutive rounds, left for the next two rounds, then selected for the sample for another two consecutive rounds before being dropped from the sample. An overlap of 50% is then achieved between both consecutive rounds and between consecutive years (making the sample efficient for monitoring purposes).
Face-to-face [f2f]
The survey questionnaire was designed according to the International Labour Organization (ILO) recommendations. The questionnaire includes four main parts:
---> 1. Identification Data: The main objective for this part is to record the necessary information to identify the household, such as, cluster code, sector, type of locality, cell, housing number and the cell code.
---> 2. Quality Control: This part involves groups of controlling standards to monitor the field and office operation, to keep in order the sequence of questionnaire stages (data collection, field and office coding, data entry, editing after entry and store the data.
---> 3. Household Roster: This part involves demographic characteristics about the household, like number of persons in the household, date of birth, sex, educational level…etc.
---> 4. Employment Part: This part involves the major research indicators, where one questionnaire had been answered by every 15 years and over household member, to be able to explore their labour force status and recognize their major characteristics toward employment status, economic activity, occupation, place of work, and other employment indicators.
---> Raw Data PCBS started collecting data since 1st quarter 2017 using the hand held devices in Palestine excluding Jerusalem in side boarders (J1) and Gaza Strip, the program used in HHD called Sql Server and Microsoft. Net which was developed by General Directorate of Information Systems. Using HHD reduced the data processing stages, the fieldworkers collect data and sending data directly to server then the project manager can withdrawal the data at any time he needs. In order to work in parallel with Gaza Strip and Jerusalem in side boarders (J1), an office program was developed using the same techniques by using the same database for the HHD.
---> Harmonized Data - The SPSS package is used to clean and harmonize the datasets. - The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency. - All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables. - A post-harmonization cleaning process is then conducted on the data. - Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.
The survey sample consists of about 30,230 households of which 23,120 households completed the interview; whereas 14,682 households from the West Bank and 8,438 households in Gaza Strip. Weights were modified to account for non-response rate. The response rate in the West Bank reached 82.4% while in the Gaza Strip it reached 92.7%.
---> Sampling Errors Data of this survey may be affected by sampling errors due to use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators: the variance table is attached with the final report. There is no problem in disseminating results at national or governorate level for the West Bank and Gaza Strip.
---> Non-Sampling Errors Non-statistical errors are probable in all stages of the project, during data collection or processing. This is referred to as non-response errors, response errors, interviewing errors, and data entry errors. To avoid errors and reduce their effects, great efforts were made to train the fieldworkers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, carrying out a pilot survey, as well as practical and theoretical training during the training course. Also data entry staff were trained on the data entry program that was examined before starting the data entry process. To stay in contact with progress of fieldwork activities and to limit obstacles, there was continuous contact with the fieldwork team through regular visits to the field and regular meetings with them during the different field visits. Problems faced by fieldworkers were discussed to clarify any issues. Non-sampling errors can occur at the various stages of survey implementation whether in data collection or in data processing. They are generally difficult to be evaluated statistically.
They cover a wide range of errors, including errors resulting from non-response, sampling frame coverage, coding and classification, data processing, and survey response (both respondent and interviewer-related). The use of effective training and supervision and the careful design of questions have direct bearing on limiting the magnitude of non-sampling errors, and hence enhancing the quality of the resulting data. The implementation of the survey encountered non-response where the case ( household was not present at home ) during the fieldwork visit and the case ( housing unit is vacant) become the high percentage of the non response cases. The total non-response rate reached14.2% which is very low once compared to the household surveys conducted by PCBS , The refusal rate reached 3.0% which is very low percentage compared to the
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Egypt Imports: CAPMAS: USD: Raw Materials data was reported at 645.150 USD mn in Oct 2018. This records an increase from the previous number of 545.876 USD mn for Sep 2018. Egypt Imports: CAPMAS: USD: Raw Materials data is updated monthly, averaging 542.585 USD mn from Dec 2015 (Median) to Oct 2018, with 35 observations. The data reached an all-time high of 724.608 USD mn in Apr 2017 and a record low of 399.509 USD mn in Jan 2016. Egypt Imports: CAPMAS: USD: Raw Materials data remains active status in CEIC and is reported by Central Agency for Public Mobilization and Statistics. The data is categorized under Global Database’s Egypt – Table EG.JA024: Imports: CAPMAS: by End Use.
Facebook
TwitterPercentage figures do not sum to 100 because it was also possible for the hospital to cancel an appointment. This outcome has been omitted because it is not relevant to the current study.Trial Two main results and descriptive statistics (raw data).
Facebook
Twitter“We cannot measure what we cannot count.” NWBC entered into an Interagency Agreement with the U.S. Census Bureau to fund the development of custom tabulations on women-owned employer and nonemployer firms. The unique custom tabulations, which utilize data from both the Annual Business Survey (ABS) and the Nonemployer Statistics by Demographics (NES-D), are featured here as raw data to serve primarily as a resource for researchers and practitioners. To learn more about the ABS and NES-D, we encourage you to visit the U.S. Census Bureau’s website at: https://www.census.gov/. Sources: Annual Business Survey--https://www.census.gov/programs-surveys/abs.html Annual Nonemployer Demographics Statistics--https://www.census.gov/programs-surveys/abs/data/nesd.html
Facebook
TwitterTrim reads statistics from raw data image file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
sheet1 raw data sheet 2 base line sheet3 subgroup raw data sheet4 results of statistical analysis