Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Having updated knowledge of cropland extent is essential for crop monitoring and food security early warning. Previous research has proposed different methods and adopted various datasets for mapping cropland areas at regional to global scales. However, most approaches did not consider the characteristics of farming systems and applied the same classification method in different agroecological zones (AEZs). Furthermore, the acquisition of in situ samples for classification training remains challenging. To address these knowledge gaps and challenges, this study applied a zone-specific classification by comparing four classifiers (random forest, the support vector machine (SVM), the classification and regression tree (CART) and minimum distance) for cropland mapping over four different AEZs in the Zambezi River basin (ZRB). Landsat-8 and Sentinel-2 data and derived indices were used and synthesized to generate thirty-five layers for classification on the Google Earth Engine platform. Training samples were derived from three existing landcover datasets to minimize the cost of sample acquisitions over the large area. The final cropland map was generated at a 10 m resolution.
The information here presented was imported from a published paper with the title ''Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin'' which its reference is shown below. The dataset here presented was created based on the results of this study.
Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; Phiri, E.; Mushore, T.D.; Kaluba, P.; Mashonjowa, E.; Moyo, C. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. https://doi.org/10.3390/rs12132096
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information.
You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.
For many years, the California Department of Water Resources (DWR) has collected land use data throughout the state and used this information to develop water use estimates for statewide and regional planning efforts, including water use projections, water use efficiency evaluation, groundwater model development, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliance issues, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography and new analytical tools make remote sensing based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate, large-scale crop and land use identification to be performed at desired time increments, and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018, 2019, 2020, 2021 and PROVISIONALLY for 2022. Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer. For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys. For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Excel dataset comprises surveyed information on the use of GIS and remote sensing platforms in climate justice initiatives, providing valuable insights from professionals and stakeholders in the field. This dataset forms the basis for the research paper, offering a comprehensive overview of current platforms / applications in addressing climate justice concerns.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.
In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques such as sub-bottom profiling, sidescan-sonar and bathymetric mapping, gravity core and grab sampling, and photography. These data were used to define the surficial sediment distribution, underlying structure and sea floor morphology of the study area. The primary focus of this report is to present a georeferenced, digital sidescan-sonar mosaic of the study region. The sidescan-sonar data were acquired with the AMS-120 (120kHz) sidescan-sonar system during USGS cruise F9-89-NC. The dataset covers approximately 1000 km squared of the continental shelf between Point Reyes, California and Half Moon Bay, California, extending west to the continental shelf break near the Farallon Islands. The sidescan-sonar mosaic displays a heterogenous sea-floor environment, containing outcropping rock, ripples, dunes, lineations and depressions, as well as flat, featureless sea floor (Karl and others, 2002). These data, along with sub-bottom interpretation and ground truth data define the geologic framework of the region. The sidescan-sonar mosaic can be used with supplemental remote sensing and sampling data as a base for future research, helping to define the local current regime and predominant sediment transport directions and forcing conditions within the Gulf of Farallones.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore the concepts, principles, and practices of acquiring, storing, analyzing, displaying, and using geospatial data. Additionally, you will investigate the science behind geographic information systems and the techniques and methods GIS scientists and professionals use to answer questions with a spatial component. In the lab section, you will become proficient with the ArcGIS Pro software package.
This course will prepare you to take more advanced geospatial science courses.
You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises, assignments, and less guided challenges. Please see the sequencing document for our suggestions as to the order in which to work through the material. To aid in working through the lecture modules, we have provided PDF versions of the lectures with the slide notes included. This course makes use of the ArcGIS Pro software package from the Environmental Systems Research Institute (ESRI), and directions for installing the software have also been provided. If you are not a West Virginia University student, you can still complete the labs, but you will need to obtain access to the software on your own.
The Bureau of Reclamation’s Remote Sensing and Geographic Information Group (RSGIS) was contracted by US Fish and Wildlife Service to map vegetation and land-use classes at LNWR using remote sensing and GIS technologies originally developed for the National Park Service’s Vegetation Mapping Program.
This is a collection of bare-Earth digital elevation models covering selected U.S. Forest Service and adjoining lands in the Southwest Region, encompassing Arizona and New Mexico. The data are presented in a time-enabled format, allowing the end-user to view available data year-by-year, or all available years at once, within a GIS system. The data encompass varying years, varying resolutions, and varying geographic extents, dependent upon available data as provided by the region. Bare-Earth DEMs, also commonly called Digital Terrain Models (DTM), represent the ground topography after removal of persistent objects such as vegetation and buildings, and therefore show the natural terrain.The data contains an attribute table. Notable attributes that may be of interest to an end-user are:lowps: the pixel size of the source raster, given in meters.highps: the pixel size of the top-most pyramid for the raster, given in meters.beginyear: the first year of data acquisition for an individual dataset.endyear: the final year of data acquisition for an individual dataset.dataset_name: the name of the individual dataset within the collection.metadata: A URL link to a file on IIPP's Portal containing metadata pertaining to an individual dataset within the image service.resolution: The pixel size of the source raster, given in meters.Terrain-related imagery are primarily derived from Lidar, stereoscopic aerial imagery, or Interferometric Synthetic Aperture Radar datasets. Consequently, these derivatives inherit the limitations and uncertainties of the parent sensor and platform and the processing techniques used to produce the imagery. The terrain images are orthographic; they have been georeferenced and displacement due to sensor orientation and topography have been removed, producing data that combines the characteristics of an image with the geometric qualities of a map. The orthographic images show ground features in their proper positions, without the distortion characteristic of unrectified aerial or satellite imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for Earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols whereas on an orthoimage all details appear just as in original aerial or satellite imagery.Tribal lands have been masked from this public service in accordance with Tribal agreements.
The Ouray National Wildlife Refuge (ONWR) was established in 1960 as an inviolate sanctuary for migratory birds and any other management purpose. In 2000, the Refuge published a Comprehensive Conservation Plan in accordance with the 1997 National Wildlife Refuge Improvement Act. The plan shifted the Refuge’s emphasis toward ecosystem-based management of all resident and migratory species. Refuge and Regional staff asked that a detailed and accurate vegetation map be developed for planning and for managing the Refuge effectively. The Bureau of Reclamation’s Remote Sensing and Geographic Information Group (RSGIS) was contracted by US Fish and Wildlife Service to map vegetation and land-use classes at ONWR using remote sensing and GIS technologies originally developed for the National Park Service’s Vegetation Mapping Program.
The diverse vegetation and complicated land-use history of Ouray National Wildlife Refuge presented a unique challenge to mapping vegetation at the plant association level of the US National Vegetation Classification. To meet this challenge, the project consisted of two linked phases: (1) vegetation classification and (2) digital vegetation map production. To classify the vegetation, we sampled representative plots located throughout the 14,025-acre (5676 ha) project area. Analysis of the plot data using ordination and clustering techniques yielded 58 distinct plant associations. To produce the digital map, we used a combination of new color-infrared aerial photography and fieldwork to interpret the complex patterns of vegetation and land-use at ONWR. Eighty-one map units were developed and the vegetation units matched to the corresponding plant associations. The interpreted map data were converted to a GIS database using ArcInfo©. Draft maps created from the vegetation classification were field-tested and revised before an independent ecologist conducted an assessment of the map’s accuracy. The accuracy assessment revealed an overall database accuracy of 75.2%.
Products developed for the Ouray National Wildlife Refuge Vegetation Mapping Project include • the final report, vegetation key, map accuracy assessment results and contingency table, and photo interpretation key; • spatial database coverages of the vegetation map, vegetation plots, accuracy assessment sites, and flight line index; • digital photos (scanned from 35mm slides) of each vegetation type; • graphics of all spatial database coverages; • Federal Geographic Data Committee-compliant metadata for all spatial database coverages and field data. 12
In addition, the Refuge and USFWS copies of this report contain • original aerial photographs of the project area; • digital data files and hard copy data sheets of the observation points, vegetation field plots, and accuracy assessment sites; • original slides of each vegetation type.
The spatial extents of verified irrigated lands were compiled from various federal and state sources across the nation and combined into a single Geographic Information System (GIS) geodatabase for the purpose of model training and validation. In cooperation with U.S. Geological Survey (USGS), researchers at the University of Wisconsin (UW) generated a nation-wide map of irrigated lands using remote-sensing techniques that will be incorporated into future irrigation water-use models. The verified spatial data varies in scope, accuracy, and time period represented, but in general represents GIS coverages (polygons) of agricultural land irrigated for at least some period during 2002–17. Data from 14 states were provided to UW (Arizona, California, Colorado, Florida, Georgia, Idaho, Illinois, Mississippi, Montana, New Mexico, Texas, Utah, Washington, and Wyoming). It is important to validate that the remote sensing techniques correctly identify both irrigated and non-irrigated land. Varying data sources prevent this approach from being applied throughout the United States, but most datasets used for validation include at least some “non irrigated” land identification.
This is a feature class outlining Palm Oil Plantations in Ucayali Province in Peru. A small team of faculty and student researchers hand digitized polygons delineating palm oil plantations in Ucayali, Peru in support of SERVIR Amazonia goals. GIS experts used high-resolution (< 1 m) optical observations to identify areas of oil palm presence across different conditions (young vs. mature, industrial vs. small-scale). This hand-digitized oil palm presence map will serve as a calibration / validation dataset for an automated classification model using remote sensing observations. This task presented numerous challenges, namely the availability of cloud-free, high resolution imagery. Polygons were digitized from numerous imagery datasets including mosaiced basemap imagery from Maxar and Planet Scope. Whenever the high resolution Maxar imagery was available, it was used. In some cases, we were unable to procure imagery in the time frame. We provide a training document describing our methodology and process in QGIS, an open source geospatial software package so other researchers could repeat our methods at later times or different geographic extents. The major variables in our study were the spatial extents of the palm oil plantations, whether they were open or closed canopy, and the imagery data source
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wildfire is a significant threat to ecosystems and human safety, exacerbated by climate warming. The Penticton region of British-Columbia, Canada is an area which is experiencing increasingly worsening wildfire events. These natural disturbance events represent a significant threat to local ecosystems, property and human life and wellbeing. As fire conditions worsen, and the population density of this region increases, landscape analysis of fire hazard levels is necessary to direct emergency service management prior to and during wildfire events and to inform policy on how to manage these natural disasters. To assess fire hazard levels, a GIS-based multi-criteria analysis was performed to understand fire hazard spatially, subdivided into low, moderate, high, and severe hazard areas. Two models were built to achieve this, taking into account commonly used variables employed to assess fire hazard severity around the world. To identify potential differences in hazard assessment, the models weighted these variables differently from one another. Fire location points from the year 2000 to 2021 were overlayed with each respective model output. Model 1 spatially overlapped with 73.88% of these fires, while model 2 spatially overlapped with 74.35%. These results can help identify areas of elevated hazard under ideal burning conditions, inform deployment of emergency services and resources, and provide a framework for using a GIS to conduct a fire hazard landscape assessment. Datasets associated and created to complete analysis employed in this research project.
Abstract
The Urban Green Raster Germany is a land cover classification for Germany that addresses in particular the urban vegetation areas. The raster dataset covers the terrestrial national territory of Germany and has a spatial resolution of 10 meters. The dataset is based on a fully automated classification of Sentinel-2 satellite data from a full 2018 vegetation period using reference data from the European LUCAS land use and land cover point dataset. The dataset identifies eight land cover classes. These include Built-up, Built-up with significant green share, Coniferous wood, Deciduous wood, Herbaceous vegetation (low perennial vegetation), Water, Open soil, Arable land (low seasonal vegetation). The land cover dataset provided here is offered as an integer raster in GeoTiff format. The assignment of the number coding to the corresponding land cover class is explained in the legend file.
Data acquisition
The data acquisition comprises two main processing steps: (1) Collection, processing, and automated classification of the multispectral Sentinel 2 satellite data with the “Land Cover DE method”, resulting in the raw land cover classification dataset, NDVI layer, and RF assignment frequency vector raster. (2) GIS-based postprocessing including discrimination of (densely) built-up and loosely built-up pixels according NDVI threshold, and creating water-body and arable-land masks from geo-topographical base-data (ATKIS Basic DLM) and reclassification of water and arable land pixels based on the assignment frequency.
Data collection
Satellite data were searched and downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).
The LUCAS reference and validation points were loaded from the Eurostat platform (https://ec.europa.eu/eurostat/web/lucas/data/database).
The processing of the satellite data was performed at the DLR data center in Oberpfaffenhofen.
GIS-based post-processing of the automatic classification result was performed at IOER in Dresden.
Value of the data
The dataset can be used to quantify the amount of green areas within cities on a homogeneous data base [5].
Thus it is possible to compare cities of different sizes regarding their greenery and with respect to their ratio of green and built-up areas [6].
Built-up areas within cities can be discriminated regarding their built-up density (dense built-up vs. built-up with higher green share).
Data description
A Raster dataset in GeoTIFF format: The dataset is stored as an 8 bit integer raster with values ranging from 1 to 8 for the eight different land cover classes. The nomenclature of the coded values is as follows: 1 = Built-up, 2=open soil; 3=Coniferous wood, 4= Deciduous wood, 5=Arable land (low seasonal vegetation), 6=Herbaceous vegetation (low perennial vegetation), 7=Water, 8=Built-up with significant green share. Name of the file ugr2018_germany.tif. The dataset is zipped alongside with accompanying files: *.twf (geo-referencing world-file), *.ovr (Overlay file for quick data preview in GIS), *.clr (Color map file).
A text file with the integer value assignment of the land cover classes. Name of the file: Legend_LC-classes.txt.
Experimental design, materials and methods
The first essential step to create the dataset is the automatic classification of a satellite image mosaic of all available Sentinel-2 images from May to September 2018 with a maximum cloud cover of 60 percent. Points from the 2018 LUCAS (Land use and land cover survey) dataset from Eurostat [1] were used as reference and validation data. Using Random Forest (RF) classifier [2], seven land use classes (Deciduous wood, Coniferous wood, Herbaceous vegetation (low perennial vegetation), Built-up, Open soil, Water, Arable land (low seasonal vegetation)) were first derived, which is methodologically in line with the procedure used to create the dataset "Land Cover DE - Sentinel-2 - Germany, 2015" [3]. The overall accuracy of the data is 93 % [4].
Two downstream post-processing steps served to further qualify the product. The first step included the selective verification of pixels of the classes arable land and water. These are often misidentified by the classifier due to radiometric similarities with other land covers; in particular, radiometric signatures of water surfaces often resemble shadows or asphalt surfaces. Due to the heterogeneous inner-city structures, pixels are also frequently misclassified as cropland.
To mitigate these errors, all pixels classified as water and arable land were matched with another data source. This consisted of binary land cover masks for these two land cover classes originating from the Monitor of Settlement and Open Space Development (IOER Monitor). For all water and cropland pixels that were outside of their respective masks, the frequencies of class assignments from the RF classifier were checked. If the assignment frequency to water or arable land was at least twice that to the subsequent class, the classification was preserved. Otherwise, the classification strength was considered too weak and the pixel was recoded to the land cover with the second largest assignment frequency.
Furthermore, an additional land cover class "Built-up with significant vegetation share" was introduced. For this purpose, all pixels of the Built-up class were intersected with the NDVI of the satellite image mosaic and assigned to the new category if an NDVI threshold was exceeded in the pixel. The associated NDVI threshold was previously determined using highest resolution reference data of urban green structures in the cities of Dresden, Leipzig and Potsdam, which were first used to determine the true green fractions within the 10m Sentinel pixels, and based on this to determine an NDVI value that could be used as an indicator of a significant green fraction within the built-up pixel. However, due to the wide dispersion of green fraction values within the built-up areas, it is not possible to establish a universally valid green percentage value for the land cover class of Built-up with significant vegetation share. Thus, the class essentially serves to the visual differentiability of densely and loosely (i.e., vegetation-dominated) built-up areas.
Acknowledgments
This work was supported by the Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR) [10.06.03.18.101].The provided data has been developed and created in the framework of the research project “Wie grün sind bundesdeutsche Städte?- Fernerkundliche Erfassung und stadträumlich-funktionale Differenzierung der Grünausstattung von Städten in Deutschland (Erfassung der urbanen Grünausstattung)“ (How green are German cities?- Remote sensing and urban-functional differentiation of the green infrastructure of cities in Germany (Urban Green Infrastructure Inventory)). Further persons involved in the project were: Fabian Dosch (funding administrator at BBSR), Stefan Fina (research partner, group leader at ILS Dortmund), Annett Frick, Kathrin Wagner (research partners at LUP Potsdam).
References
[1] Eurostat (2021): Land cover / land use statistics database LUCAS. URL: https://ec.europa.eu/eurostat/web/lucas/data/database
[2] L. Breiman (2001). Random forests, Mach. Learn., 45, pp. 5-32
[3] M. Weigand, M. Wurm (2020). Land Cover DE - Sentinel-2—Germany, 2015 [Data set]. German Aerospace Center (DLR). doi: 10.15489/1CCMLAP3MN39
[4] M. Weigand, J. Staab, M. Wurm, H. Taubenböck, (2020). Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int J Appl Earth Obs, 88, 102065. doi: https://doi.org/10.1016/j.jag.2020.102065
[5] L. Eichler., T. Krüger, G. Meinel, G. (2020). Wie grün sind deutsche Städte? Indikatorgestützte fernerkundliche Erfassung des Stadtgrüns. AGIT Symposium 2020, 6, 306–315. doi: 10.14627/537698030
[6] H. Taubenböck, M. Reiter, F. Dosch, T. Leichtle, M. Weigand, M. Wurm (2021). Which city is the greenest? A multi-dimensional deconstruction of city rankings. Comput Environ Urban Syst, 89, 101687. doi: 10.1016/j.compenvurbsys.2021.101687
This data release includes GIS datasets supporting the Colorado Legacy Mine Lands Watershed Delineation and Scoring tool (WaDeS), a web mapping application available at https://geonarrative.usgs.gov/colmlwades/. Water chemistry data were compiled from the U.S. Geological Survey (USGS) National Water Information System (NWIS), U.S. Environmental Protection Agency (EPA) STORET database, and the USGS Central Colorado Assessment Project (CCAP) (Church and others, 2009). The CCAP study area was used for this application. Samples were summarized at each monitoring station and hardness-dependent chronic and acute toxicity thresholds for aquatic life protections under Colorado Regulation No. 31 (CDPHE, 5 CCR 1002-31) for cadmium, copper, lead, and/or zinc were calculated. Samples were scored according to how metal concentrations compared with acute and chronic toxicity thresholds. The results were used in combination with remote sensing derived hydrothermal alteration (Rockwell and Bonham, 2017) and mine-related features (Horton and San Juan, 2016) to identify potential mine remediation sites within the headwaters of the central Colorado mineral belt. Headwaters were defined by watersheds delineated from a 10-meter digital elevation dataset (DEM), ranging in 5-35 square kilometers in size. Python and R scripts used to derive these products are included with this data release as documentation of the processing steps and to enable users to adapt the methods for their own applications. References Church, S.E., San Juan, C.A., Fey, D.L., Schmidt, T.S., Klein, T.L. DeWitt, E.H., Wanty, R.B., Verplanck, P.L., Mitchell, K.A., Adams, M.G., Choate, L.M., Todorov, T.I., Rockwell, B.W., McEachron, Luke, and Anthony, M.W., 2012, Geospatial database for regional environmental assessment of central Colorado: U.S. Geological Survey Data Series 614, 76 p., https://doi.org/10.3133/ds614. Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Commission 5 CCR 1002-31. Regulation No. 31 The Basic Standards and Methodologies for Surface Water. Effective 12/31/2021, accessed on July 28, 2023 at https://cdphe.colorado.gov/water-quality-control-commission-regulations. Horton, J.D., and San Juan, C.A., 2022, Prospect- and mine-related features from U.S. Geological Survey 7.5- and 15-minute topographic quadrangle maps of the United States (ver. 8.0, September 2022): U.S. Geological Survey data release, https://doi.org/10.5066/F78W3CHG. Rockwell, B.W. and Bonham, L.C., 2017, Digital maps of hydrothermal alteration type, key mineral groups, and green vegetation of the western United States derived from automated analysis of ASTER satellite data: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5RK7.
This product set contains reduced-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of an Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). The DSM and DTM data sets (20 m resolution) are provided in floating-point binary format with header and projection files. The ORRI mosaic (5 m resolution) is available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are available via FTP and CD-ROM.
This product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This remote sensing image dataset includes orthomosaics and Spartina alterniflora spatial data, derived from drone-based RGB photos over Zhangjiang Estuary, Fujian Province from 2013 to 2022. The drone photos were collected via automatic flight planning mainly during daytime low-tide periods. Based on the structure-from-motion three-dimension reconstruction technique, for each campaign the drone photos can be mosaiced into a digital orthophoto map, which is then used for extracting the spatial distribution of Spartina alterniflora. The dataset contains 2 folders including 10 orthomosaics and 10 Spartina alterniflora data, respectively. The file sizes are 1.7GB and 10.7MB for the orthomosaics and Spartina alterniflora data, respectively. All the data are in TIF format, and you can use GIS or remote sensing softwares like ArcGIS and ENVI to open them. The orthomosaics are named as "date-DOM" or the datasets with network RTK positioning service are named as "date-DOM-RTK". For example, the orthmosaic in June, 2022 is named as "202206-DOM-RTK.tif". Spartina alterniflora datasets are named "date-classified". The resolution of all data is 20 cm and the coordinate system is WGS84/UTM zone 50N. The drones used are different for these flights, and there is a slight deviation in positioning accuracy.
This is a collection of Digital Surface Models and Highest Hit rasters covering selected U.S. Forest Service and adjoining lands in the Southwest Region, encompassing Arizona and New Mexico. The data are presented in a time-enabled format, allowing the end-user to view available data year-by-year, or all available years at once, within a GIS system. The data encompass varying years, varying resolutions, and varying geographic extents, dependent upon available data as provided by the region. DSM and Highest Hit rasters represent elevation of Earth's surface, including its natural and human-made features, such as vegetation and buildings.The data contains an attribute table. Notable attributes that may be of interest to an end-user are:lowps: the pixel size of the source raster, given in meters.highps: the pixel size of the top-most pyramid for the raster, given in meters.beginyear: the first year of data acquisition for an individual dataset.endyear: the final year of data acquisition for an individual dataset.dataset_name: the name of the individual dataset within the collection.metadata: A URL link to a file on IIPP's Portal containing metadata pertaining to an individual dataset within the image service.resolution: The pixel size of the source raster, given in meters.Terrain-related imagery are primarily derived from Lidar, stereoscopic aerial imagery, or Interferometric Synthetic Aperture Radar datasets. Consequently, these derivatives inherit the limitations and uncertainties of the parent sensor and platform and the processing techniques used to produce the imagery. The terrain images are orthographic; they have been georeferenced and displacement due to sensor orientation and topography have been removed, producing data that combines the characteristics of an image with the geometric qualities of a map. The orthographic images show ground features in their proper positions, without the distortion characteristic of unrectified aerial or satellite imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for Earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols whereas on an orthoimage all details appear just as in original aerial or satellite imagery.Tribal lands have been masked from this public service in accordance with Tribal agreements.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Having updated knowledge of cropland extent is essential for crop monitoring and food security early warning. Previous research has proposed different methods and adopted various datasets for mapping cropland areas at regional to global scales. However, most approaches did not consider the characteristics of farming systems and applied the same classification method in different agroecological zones (AEZs). Furthermore, the acquisition of in situ samples for classification training remains challenging. To address these knowledge gaps and challenges, this study applied a zone-specific classification by comparing four classifiers (random forest, the support vector machine (SVM), the classification and regression tree (CART) and minimum distance) for cropland mapping over four different AEZs in the Zambezi River basin (ZRB). Landsat-8 and Sentinel-2 data and derived indices were used and synthesized to generate thirty-five layers for classification on the Google Earth Engine platform. Training samples were derived from three existing landcover datasets to minimize the cost of sample acquisitions over the large area. The final cropland map was generated at a 10 m resolution.
The information here presented was imported from a published paper with the title ''Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin'' which its reference is shown below. The dataset here presented was created based on the results of this study.
Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; Phiri, E.; Mushore, T.D.; Kaluba, P.; Mashonjowa, E.; Moyo, C. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. https://doi.org/10.3390/rs12132096