Multiple sampling campaigns were conducted near Boulder, Colorado, to quantify constituent concentrations and loads in Boulder Creek and its tributary, South Boulder Creek. Diel sampling was initiated at approximately 1100 hours on September 17, 2019, and continued until approximately 2300 hours on September 18, 2019. During this time period, samples were collected at two locations on Boulder Creek approximately every 3.5 hours to quantify the diel variability of constituent concentrations at low flow. Synoptic sampling campaigns on South Boulder Creek and Boulder Creek were conducted October 15-18, 2019, to develop spatial profiles of concentration, streamflow, and load. Numerous main stem and inflow locations were sampled during each synoptic campaign using the simple grab technique (17 main stem and 2 inflow locations on South Boulder Creek; 34 main stem and 17 inflow locations on Boulder Creek). Streamflow at each main stem location was measured using acoustic doppler velocimetry. Bulk samples from all sampling campaigns were processed within one hour of sample collection. Processing steps included measurement of pH and specific conductance, and filtration using 0.45-micron filters. Laboratory analyses were subsequently conducted to determine dissolved and total recoverable constituent concentrations. Filtered samples were analyzed for a suite of dissolved anions using ion chromatography. Filtered, acidified samples and unfiltered acidified samples were analyzed by inductively coupled plasma-mass spectrometry and inductively coupled plasma-optical emission spectroscopy to determine dissolved and total recoverable cation concentrations, respectively. This data release includes three data tables, three photographs, and a kmz file showing the sampling locations. Additional information on the data table contents, including the presentation of data below the analytical detection limits, is provided in a Data Dictionary.
Biological sampling data is information that comes from biological samples of fish harvested in Virginia for aging purposes to aid in coastal stock assessments
This dataset contains information on fishing activity collecting biololgical samples for better understanding life history of bottomfish in Guam. The data contain information on trip, catch, and effort. The trip specific data contains information on fisher and vessel, observer (person who entered the data), the port trip started in, start time and day and end time and day of trip, the fishing a...
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sampling intervals highlighted in bold numbers indicate the approximate vertical extent of the oxygen minimum zone (O2≤45 µmol kg−1). D = Discovery cruise, MSM = Maria S. Merian cruises, UTC = universal time code, O2 min = lowest oxygen concentration at the respective station, O2 min depth = depth of the oxygen minimum at the respective station, SST = sea surface temperature, n.d. = no data, * = stations analysed for copepod abundance.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite the wide application of longitudinal studies, they are often plagued by missing data and attrition. The majority of methodological approaches focus on participant retention or modern missing data analysis procedures. This paper, however, takes a new approach by examining how researchers may supplement the sample with additional participants. First, refreshment samples use the same selection criteria as the initial study. Second, replacement samples identify auxiliary variables that may help explain patterns of missingness and select new participants based on those characteristics. A simulation study compares these two strategies for a linear growth model with five measurement occasions. Overall, the results suggest that refreshment samples lead to less relative bias, greater relative efficiency, and more acceptable coverage rates than replacement samples or not supplementing the missing participants in any way. Refreshment samples also have high statistical power. The comparative strengths of the refreshment approach are further illustrated through a real data example. These findings have implications for assessing change over time when researching at-risk samples with high levels of permanent attrition.
Establishment specific sampling results for Siluriformes Product sampling projects. Current data is updated quarterly; archive data is updated annually. Data is split by FY. See the FSIS website for additional information.
Data collected to assess water quality conditions in the natural creeks, aquifers and lakes in the Austin area. This is raw data, provided directly from our Water Resources Monitoring database (WRM) and should be considered provisional. Data may or may not have been reviewed by project staff. A map of site locations can be found by searching for LOCATION.WRM_SAMPLE_SITES; you may then use those WRM_SITE_IDs to filter in this dataset using the field SAMPLE_SITE_NO.
The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
https://www.bgs.ac.uk/information-hub/licensing/https://www.bgs.ac.uk/information-hub/licensing/
This layer provides geochemical analysis associated with offshore sampling activities. It contains analysis of 38 elements and should be used as a baseline for chemical element concentrations in seabed sediments, against which samples collected in the future may be assessed. Related data in Offshore Sample Data - Activity & Scan collection.
Most countries collect official statistics on energy use due to its vital role in the infrastructure, economy and living standards.
In Palestine, additional attention is warranted for energy statistics due to a scarcity of natural resources, the high cost of energy and high population density. These factors demand comprehensive and high quality statistics.
In this contest PCBS decided to conduct a special Energy Consumption in Transport Survey to provide high quality data about energy consumption by type, expenditure on maintenance and insurance for vehicles, and questions on vehicles motor capacity and year of production.
The survey aimed to provide data on energy consumption by transport sector and also on the energy consumption by the type of vehicles and its motor capacity and year of production.
Palestine
Vehicles
All the operating vehicles in Palestine in 2014.
Sample survey data [ssd]
Target Population: All the operating vehicles in Palestine in 2014.
2.1Sample Frame A list of the number of the operating vehicles in Palestine in 2014, they are broken down by governorates and vehicle types, this list was obtained from Ministry of transport.
2.2.1 Sample size The sample size is 6,974 vehicles.
2.2.2 Sampling Design it is stratified random sample, and in some of the small size strata the quota sample was used to cover them.
The method of reaching the vehicles sample was through : 1-reaching to all the dynamometers (the centers for testing the vehicles) 2-selecting a random sample of vehicles by type of vehicle, model, fuel type and engine capacity
Face-to-face [f2f]
The design of the questionnaire was based on the experiences of other similar countries in energy statistics subject to cover the most important indicators for energy statistics in transport sector, taking into account Palestine's particular situation.
The data processing stage consisted of the following operations: Editing and coding prior to data entry: all questionnaires were edited and coded in the office using the same instructions adopted for editing in the field.
Data entry: The survey questionnaire was uploaded on office computers. At this stage, data were entered into the computer using a data entry template developed in Access Database. The data entry program was prepared to satisfy a number of requirements: ·To prevent the duplication of questionnaires during data entry. ·To apply checks on the integrity and consistency of entered data. ·To handle errors in a user friendly manner. ·The ability to transfer captured data to another format for data analysis using statistical analysis software such as SPSS. Audit after data entered at this stage is data entered scrutiny by pulling the data entered file periodically and review the data and examination of abnormal values and check consistency between the different questions in the questionnaire, and if there are any errors in the data entered to be the withdrawal of the questionnaire and make sure this data and adjusted, even been getting the final data file that is the final extract data from it. Extraction Results: The extract final results of the report by using the SPSS program, and then display the results through tables to Excel format.
80.7%
Data of this survey may be affected by sampling errors due to use of a sample and not a complete enumeration. Therefore, certain differences are anticipated in comparison with the real values obtained through censuses. The variance was calculated for the most important indicators: the variance table is attached with the final report. There is no problem in the dissemination of results at national and regional level (North, Middle, South of West Bank, Gaza Strip).
The survey sample consisted of around 6,974 vehicles, of which 5,631 vehicles completed the questionnaire, 3,652 vehicles from the West Bank and 1,979 vehicles in Gaza Strip.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data products are the sampling results from FSIS’ National Antimicrobial Resistance Monitoring System (NARMS) Cecal sampling program. Data for sampling results from NARMS Product sampling program is currently posted on the FSIS Website and are grouped by commodity (https://www.fsis.usda.gov/science-data/data-sets-visualizations/laboratory-sampling-data). The antimicrobials and bacteria tested under NARMS are selected are based on their importance to human health and use in food-producing animals (FDA Guidance for Industry # 152 (https://www.fda.gov/media/69949/download)). Cecal contents from cattle, swine, chicken, and turkeys were sampled as part of FSIS’s routine NARMS cecal sampling program for major species.
The Bangladesh Demographic and Health Survey (BDHS) is part of the worldwide Demographic and Health Surveys program, which is designed to collect data on fertility, family planning, and maternal and child health.
The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - assess the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.
More specifically, the objective of the BDHS is to provide up-to-date information on fertility and childhood mortality levels; nuptiality; fertility preferences; awareness, approval, and use of family planning methods; breastfeeding practices; nutrition levels; and maternal and child health. This information is intended to assist policymakers and administrators in evaluating and designing programs and strategies for improving health and family planning services in the country.
National
Sample survey data
Bangladesh is divided into six administrative divisions, 64 districts (zillas), and 490 thanas. In rural areas, thanas are divided into unions and then mauzas, a land administrative unit. Urban areas are divided into wards and then mahallas. The 1996-97 BDHS employed a nationally-representative, two-stage sample that was selected from the Integrated Multi-Purpose Master Sample (IMPS) maintained by the Bangladesh Bureau of Statistics. Each division was stratified into three groups: 1 ) statistical metropolitan areas (SMAs), 2) municipalities (other urban areas), and 3) rural areas. 3 In the rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 Census frame, the units for the BDHS were sub-selected from the IMPS with equal probability so as to retain the overall probability proportional to size. A total of 316 primary sampling units were utilized for the BDHS (30 in SMAs, 42 in municipalities, and 244 in rural areas). In order to highlight changes in survey indicators over time, the 1996-97 BDHS utilized the same sample points (though not necessarily the same households) that were selected for the 1993-94 BDHS, except for 12 additional sample points in the new division of Sylhet. Fieldwork in three sample points was not possible (one in Dhaka Cantonment and two in the Chittagong Hill Tracts), so a total of 313 points were covered.
Since one objective of the BDHS is to provide separate estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal and Sylhet Divisions and for municipalities relative to the other divisions, SMAs and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.
Mitra and Associates conducted a household listing operation in all the sample points from 15 September to 15 December 1996. A systematic sample of 9,099 households was then selected from these lists. Every second household was selected for the men's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed all currently married men age 15-59. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 3,000 currently married men age 15-59.
Note: See detailed in APPENDIX A of the survey report.
Face-to-face
Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Men' s Questionnaire and a Community Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. These model questionnaires were adapted for use in Bangladesh during a series of meetings with a small Technical Task Force that consisted of representatives from NIPORT, Mitra and Associates, USAID/Bangladesh, the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Population Council/Dhaka, and Macro International Inc (see Appendix D for a list of members). Draft questionnaires were then circulated to other interested groups and were reviewed by the BDHS Technical Review Committee (see Appendix D for list of members). The questionnaires were developed in English and then translated into and printed in Bangla (see Appendix E for final version in English).
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.
The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age five, - Marriage, - Fertility preferences, - Husband's background and respondent's work, - Knowledge of AIDS, - Height and weight of children under age five and their mothers.
The Men's Questionnaire was used to interview currently married men age 15-59. It was similar to that for women except that it omitted the sections on reproductive history, antenatal and delivery care, breastfeeding, vaccinations, and height and weight. The Community Questionnaire was completed for each sample point and included questions about the existence in the community of income-generating activities and other development organizations and the availability of health and family planning services.
A total of 9,099 households were selected for the sample, of which 8,682 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 8,762 households occupied, 99 percent were successfully interviewed. In these households, 9,335 women were identified as eligible for the individual interview (i.e., ever-married and age 10-49) and interviews were completed for 9,127 or 98 percent of them. In the half of the households that were selected for inclusion in the men's survey, 3,611 eligible ever-married men age 15-59 were identified, of whom 3,346 or 93 percent were interviewed.
The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the BDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the BDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the BDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the BDHS is the ISSA Sampling Error Module. This module used the Taylor
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Online imbalanced learning is an emerging topic that combines the challenges of class imbalance and concept drift. However, current works account for issues of class imbalance and concept drift. And only few works have considered these issues simultaneously. To this end, this paper proposes an entropy-based dynamic ensemble classification algorithm (EDAC) to consider data streams with class imbalance and concept drift simultaneously. First, to address the problem of imbalanced learning in training data chunks arriving at different times, EDAC adopts an entropy-based balanced strategy. It divides the data chunks into multiple balanced sample pairs based on the differences in the information entropy between classes in the sample data chunk. Additionally, we propose a density-based sampling method to improve the accuracy of classifying minority class samples into high quality samples and common samples via the density of similar samples. In this manner high quality and common samples are randomly selected for training the classifier. Finally, to solve the issue of concept drift, EDAC designs and implements an ensemble classifier that uses a self-feedback strategy to determine the initial weight of the classifier by adjusting the weight of the sub-classifier according to the performance on the arrived data chunks. The experimental results demonstrate that EDAC outperforms five state-of-the-art algorithms considering four synthetic and one real-world data streams.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data set includes basic data characterizing a chemical analysis of aqueous fluid for the AASG geothermal data project. The data set combines aqueous well and spring observations throughout Utah.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
N, number of environmental samples;Q, number of clones sequenced;S, taxonomic richness; OTU, number of OTUs, 97% genetic similarity;HNP, nonparametric Shannon diversity index; Chao1, Chao’s nonparametric estimate of species diversity.
Within the frame of PCBS' efforts in providing official Palestinian statistics in the different life aspects of Palestinian society and because the wide spread of Computer, Internet and Mobile Phone among the Palestinian people, and the important role they may play in spreading knowledge and culture and contribution in formulating the public opinion, PCBS conducted the Household Survey on Information and Communications Technology, 2014.
The main objective of this survey is to provide statistical data on Information and Communication Technology in the Palestine in addition to providing data on the following: -
· Prevalence of computers and access to the Internet. · Study the penetration and purpose of Technology use.
Palestine (West Bank and Gaza Strip) , type of locality (Urban, Rural, Refugee Camps) and governorate
Household. Person 10 years and over .
All Palestinian households and individuals whose usual place of residence in Palestine with focus on persons aged 10 years and over in year 2014.
Sample survey data [ssd]
Sampling Frame The sampling frame consists of a list of enumeration areas adopted in the Population, Housing and Establishments Census of 2007. Each enumeration area has an average size of about 124 households. These were used in the first phase as Preliminary Sampling Units in the process of selecting the survey sample.
Sample Size The total sample size of the survey was 7,268 households, of which 6,000 responded.
Sample Design The sample is a stratified clustered systematic random sample. The design comprised three phases:
Phase I: Random sample of 240 enumeration areas. Phase II: Selection of 25 households from each enumeration area selected in phase one using systematic random selection. Phase III: Selection of an individual (10 years or more) in the field from the selected households; KISH TABLES were used to ensure indiscriminate selection.
Sample Strata Distribution of the sample was stratified by: 1- Governorate (16 governorates, J1). 2- Type of locality (urban, rural and camps).
-
Face-to-face [f2f]
The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.
Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.
Section III: Data on persons (aged 10 years and over) about computer use, access to the Internet and possession of a mobile phone.
Preparation of Data Entry Program: This stage included preparation of the data entry programs using an ACCESS package and defining data entry control rules to avoid errors, plus validation inquiries to examine the data after it had been captured electronically.
Data Entry: The data entry process started on 8 May 2014 and ended on 23 June 2014. The data entry took place at the main PCBS office and in field offices using 28 data clerks.
Editing and Cleaning procedures: Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
Response Rates= 79%
There are many aspects of the concept of data quality; this includes the initial planning of the survey to the dissemination of the results and how well users understand and use the data. There are three components to the quality of statistics: accuracy, comparability, and quality control procedures.
Checks on data accuracy cover many aspects of the survey and include statistical errors due to the use of a sample, non-statistical errors resulting from field workers or survey tools, and response rates and their effect on estimations. This section includes:
Statistical Errors Data of this survey may be affected by statistical errors due to the use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators.
Variance calculations revealed that there is no problem in disseminating results nationally or regionally (the West Bank, Gaza Strip), but some indicators show high variance by governorate, as noted in the tables of the main report.
Non-Statistical Errors Non-statistical errors are possible at all stages of the project, during data collection or processing. These are referred to as non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, and practical and theoretical training took place during the training course. Training manuals were provided for each section of the questionnaire, along with practical exercises in class and instructions on how to approach respondents to reduce refused cases. Data entry staff were trained on the data entry program, which was tested before starting the data entry process.
Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
The sources of non-statistical errors can be summarized as: 1. Some of the households were not at home and could not be interviewed, and some households refused to be interviewed. 2. In unique cases, errors occurred due to the way the questions were asked by interviewers and respondents misunderstood some of the questions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the data for the paper "How Twitter Data Sampling Biases U.S. Voter Behavior Characterizations."
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Two different problems, i.e. a low-dimensional (LD) and a high-dimensional (HD) problems are considered. The LD problem has 2 variables for a 4-ply symmetric square composite laminate. Similarly, the HD problem consists of 16 variables for a 32-ply symmetric square composite laminate. The value of h for LD and HD problems is taken as 0.005 and 0.04 respectively.
For each problem, three different types of sampling technique, i.e. random sampling (RS), Latin hypercube sampling (LHS) [1] and Hammersley sampling (HS) [2] are adopted. The RS, LHS and HS primarily differ in the uniformity of sample points over the design space such that RS has the least and HS has the maximum uniform distributions of sample points. Based on the recommendations of Jin et al. [3], and Zhao and Xue [4], 72 and 612 sample points are considered in each training dataset of LD and HD problems respectively.
Based on the FE formulation, several high-fidelity datasets for the LD and HD problems are generated, as presented in the Supplementary Material file “Predictive modelling of laminated composite plates.xlsx” in nine sheets that are organized as detailed out in Table 1.
References:
McKay, M. D.; Beckman, R. J.; Conover, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 2000, 42, 55-61.
Hammersley, J. M. Monte Carlo methods for solving multivariable problems. Annals of the New York Academy of Sciences, 1960, 86, 844-874.
Jin, R.; Chen, W.; Simpson, T. W. Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 2001, 23, 1-13.
Zhao, D.; Xue, D. A comparative study of metamodeling methods considering sample quality merits. Structural and Multidisciplinary Optimization, 2010, 42, 923-938.
In 2001, the World Bank in co-operation with the Republika Srpska Institute of Statistics (RSIS), the Federal Institute of Statistics (FOS) and the Agency for Statistics of BiH (BHAS), carried out a Living Standards Measurement Survey (LSMS). The Living Standard Measurement Survey LSMS, in addition to collecting the information necessary to obtain a comprehensive as possible measure of the basic dimensions of household living standards, has three basic objectives, as follows:
To provide the public sector, government, the business community, scientific institutions, international donor organizations and social organizations with information on different indicators of the population's living conditions, as well as on available resources for satisfying basic needs.
To provide information for the evaluation of the results of different forms of government policy and programs developed with the aim to improve the population's living standard. The survey will enable the analysis of the relations between and among different aspects of living standards (housing, consumption, education, health, labor) at a given time, as well as within a household.
To provide key contributions for development of government's Poverty Reduction Strategy Paper, based on analyzed data.
The Department for International Development, UK (DFID) contributed funding to the LSMS and provided funding for a further two years of data collection for a panel survey, known as the Household Survey Panel Series (HSPS). Birks Sinclair & Associates Ltd. were responsible for the management of the HSPS with technical advice and support provided by the Institute for Social and Economic Research (ISER), University of Essex, UK. The panel survey provides longitudinal data through re-interviewing approximately half the LSMS respondents for two years following the LSMS, in the autumn of 2002 and 2003. The LSMS constitutes Wave 1 of the panel survey so there are three years of panel data available for analysis. For the purposes of this documentation we are using the following convention to describe the different rounds of the panel survey:
- Wave 1 LSMS conducted in 2001 forms the baseline survey for the panel
- Wave 2 Second interview of 50% of LSMS respondents in Autumn/ Winter 2002
- Wave 3 Third interview with sub-sample respondents in Autumn/ Winter 2003
The panel data allows the analysis of key transitions and events over this period such as labour market or geographical mobility and observe the consequent outcomes for the well-being of individuals and households in the survey. The panel data provides information on income and labour market dynamics within FBiH and RS. A key policy area is developing strategies for the reduction of poverty within FBiH and RS. The panel will provide information on the extent to which continuous poverty is experienced by different types of households and individuals over the three year period. And most importantly, the co-variates associated with moves into and out of poverty and the relative risks of poverty for different people can be assessed. As such, the panel aims to provide data, which will inform the policy debates within FBiH and RS at a time of social reform and rapid change.
National coverage. Domains: Urban/rural/mixed; Federation; Republic
Sample survey data [ssd]
The Wave 3 sample consisted of 2878 households who had been interviewed at Wave 2 and a further 73 households who were interviewed at Wave 1 but were non-contact at Wave 2 were issued. A total of 2951 households (1301 in the RS and 1650 in FBiH) were issued for Wave 3. As at Wave 2, the sample could not be replaced with any other households.
Panel design
Eligibility for inclusion
The household and household membership definitions are the same standard definitions as a Wave 2. While the sample membership status and eligibility for interview are as follows: i) All members of households interviewed at Wave 2 have been designated as original sample members (OSMs). OSMs include children within households even if they are too young for interview. ii) Any new members joining a household containing at least one OSM, are eligible for inclusion and are designated as new sample members (NSMs). iii) At each wave, all OSMs and NSMs are eligible for inclusion, apart from those who move outof-scope (see discussion below). iv) All household members aged 15 or over are eligible for interview, including OSMs and NSMs.
Following rules
The panel design means that sample members who move from their previous wave address must be traced and followed to their new address for interview. In some cases the whole household will move together but in others an individual member may move away from their previous wave household and form a new split-off household of their own. All sample members, OSMs and NSMs, are followed at each wave and an interview attempted. This method has the benefit of maintaining the maximum number of respondents within the panel and being relatively straightforward to implement in the field.
Definition of 'out-of-scope'
It is important to maintain movers within the sample to maintain sample sizes and reduce attrition and also for substantive research on patterns of geographical mobility and migration. The rules for determining when a respondent is 'out-of-scope' are as follows:
i. Movers out of the country altogether i.e. outside FBiH and RS. This category of mover is clear. Sample members moving to another country outside FBiH and RS will be out-of-scope for that year of the survey and not eligible for interview.
ii. Movers between entities Respondents moving between entities are followed for interview. The personal details of the respondent are passed between the statistical institutes and a new interviewer assigned in that entity.
iii. Movers into institutions Although institutional addresses were not included in the original LSMS sample, Wave 3 individuals who have subsequently moved into some institutions are followed. The definitions for which institutions are included are found in the Supervisor Instructions.
iv. Movers into the district of Brcko are followed for interview. When coding entity Brcko is treated as the entity from which the household who moved into Brcko originated.
Face-to-face [f2f]
Questionnaire design
Approximately 90% of the questionnaire (Annex B) is based on the Wave 2 questionnaire, carrying forward core measures that are needed to measure change over time. The questionnaire was widely circulated and changes were made as a result of comments received.
Pretesting
In order to undertake a longitudinal test the Wave 2 pretest sample was used. The Control Forms and Advance letters were generated from an Access database containing details of ten households in Sarajevo and fourteen in Banja Luka. The pretest was undertaken from March 24-April 4 and resulted in 24 households (51 individuals) successfully interviewed. One mover household was successfully traced and interviewed.
In order to test the questionnaire under the hardest circumstances a briefing was not held. A list of the main questionnaire changes was given to experienced interviewers.
Issues arising from the pretest
Interviewers were asked to complete a Debriefing and Rating form. The debriefing form captured opinions on the following three issues:
General reaction to being re-interviewed. In some cases there was a wariness of being asked to participate again, some individuals asking “Why Me?” Interviewers did a good job of persuading people to take part, only one household refused and another asked to be removed from the sample next year. Having the same interviewer return to the same households was considered an advantage. Most respondents asked what was the benefit to them of taking part in the survey. This aspect was reemphasised in the Advance Letter, Respondent Report and training of the Wave 3 interviewers.
Length of the questionnaire. The average time of interview was 30 minutes. No problems were mentioned in relation to the timing, though interviewers noted that some respondents, particularly the elderly, tended to wonder off the point and that control was needed to bring them back to the questions in the questionnaire. One interviewer noted that the economic situation of many respondents seems to have got worse from the previous year and it was necessary to listen to respondents “stories” during the interview.
Confidentiality. No problems were mentioned in relation to confidentiality. Though interviewers mentioned it might be worth mentioning the new Statistics Law in the Advance letter. The Rating Form asked for details of specific questions that were unclear. These are described below with a description of the changes made.
Module 3. Q29-31 have been added to capture funds received for education, scholarships etc.
Module 4. Pretest respondents complained that the 6 questions on "Has your health limited you..." and the 16 on "in the last 7 days have you felt depressed” etc were too many. These were reduced by half (Q38-Q48). The LSMS data was examined and those questions where variability between the answers was widest were chosen.
Module 5. The new employment questions (Q42-Q44) worked well and have been kept in the main questionnaire.
Module 7. There were no problems reported with adding the credit questions (Q28-Q36)
Module 9. SIG recommended that some of Questions 1-12 were relevant only to those aged over 18 so additional skips have been added. Some respondents complained the questionnaire was boring. To try and overcome
Multiple sampling campaigns were conducted near Boulder, Colorado, to quantify constituent concentrations and loads in Boulder Creek and its tributary, South Boulder Creek. Diel sampling was initiated at approximately 1100 hours on September 17, 2019, and continued until approximately 2300 hours on September 18, 2019. During this time period, samples were collected at two locations on Boulder Creek approximately every 3.5 hours to quantify the diel variability of constituent concentrations at low flow. Synoptic sampling campaigns on South Boulder Creek and Boulder Creek were conducted October 15-18, 2019, to develop spatial profiles of concentration, streamflow, and load. Numerous main stem and inflow locations were sampled during each synoptic campaign using the simple grab technique (17 main stem and 2 inflow locations on South Boulder Creek; 34 main stem and 17 inflow locations on Boulder Creek). Streamflow at each main stem location was measured using acoustic doppler velocimetry. Bulk samples from all sampling campaigns were processed within one hour of sample collection. Processing steps included measurement of pH and specific conductance, and filtration using 0.45-micron filters. Laboratory analyses were subsequently conducted to determine dissolved and total recoverable constituent concentrations. Filtered samples were analyzed for a suite of dissolved anions using ion chromatography. Filtered, acidified samples and unfiltered acidified samples were analyzed by inductively coupled plasma-mass spectrometry and inductively coupled plasma-optical emission spectroscopy to determine dissolved and total recoverable cation concentrations, respectively. This data release includes three data tables, three photographs, and a kmz file showing the sampling locations. Additional information on the data table contents, including the presentation of data below the analytical detection limits, is provided in a Data Dictionary.