71 datasets found
  1. f

    Performance of machine learning models using SMOTE-balanced dataset.

    • plos.figshare.com
    xls
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nihal Abuzinadah; Muhammad Umer; Abid Ishaq; Abdullah Al Hejaili; Shtwai Alsubai; Ala’ Abdulmajid Eshmawi; Abdullah Mohamed; Imran Ashraf (2023). Performance of machine learning models using SMOTE-balanced dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0293061.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Nihal Abuzinadah; Muhammad Umer; Abid Ishaq; Abdullah Al Hejaili; Shtwai Alsubai; Ala’ Abdulmajid Eshmawi; Abdullah Mohamed; Imran Ashraf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Performance of machine learning models using SMOTE-balanced dataset.

  2. f

    The definition of a confusion matrix.

    • plos.figshare.com
    xls
    Updated Feb 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Javad Hemmatian; Rassoul Hajizadeh; Fakhroddin Nazari (2025). The definition of a confusion matrix. [Dataset]. http://doi.org/10.1371/journal.pone.0317396.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Javad Hemmatian; Rassoul Hajizadeh; Fakhroddin Nazari
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In recent years, the challenge of imbalanced data has become increasingly prominent in machine learning, affecting the performance of classification algorithms. This study proposes a novel data-level oversampling method called Cluster-Based Reduced Noise SMOTE (CRN-SMOTE) to address this issue. CRN-SMOTE combines SMOTE for oversampling minority classes with a novel cluster-based noise reduction technique. In this cluster-based noise reduction approach, it is crucial that samples from each category form one or two clusters, a feature that conventional noise reduction methods do not achieve. The proposed method is evaluated on four imbalanced datasets (ILPD, QSAR, Blood, and Maternal Health Risk) using five metrics: Cohen’s kappa, Matthew’s correlation coefficient (MCC), F1-score, precision, and recall. Results demonstrate that CRN-SMOTE consistently outperformed the state-of-the-art Reduced Noise SMOTE (RN-SMOTE), SMOTE-Tomek Link, and SMOTE-ENN methods across all datasets, with particularly notable improvements observed in the QSAR and Maternal Health Risk datasets, indicating its effectiveness in enhancing imbalanced classification performance. Overall, the experimental findings indicate that CRN-SMOTE outperformed RN-SMOTE in 100% of the cases, achieving average improvements of 6.6% in Kappa, 4.01% in MCC, 1.87% in F1-score, 1.7% in precision, and 2.05% in recall, with setting SMOTE’s neighbors’ number to 5.

  3. f

    Summary table: Oversampling techniques using SMOTE, ADASYN, and weighted...

    • plos.figshare.com
    xls
    Updated Nov 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaa Alomari; Hossam Faris; Pedro A. Castillo (2023). Summary table: Oversampling techniques using SMOTE, ADASYN, and weighted rare classes. [Dataset]. http://doi.org/10.1371/journal.pone.0290581.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 16, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Alaa Alomari; Hossam Faris; Pedro A. Castillo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary table: Oversampling techniques using SMOTE, ADASYN, and weighted rare classes.

  4. f

    A comparison of the RN-SMOTE, SMOTE-Tomek Link, SMOTE-ENN, and the proposed...

    • plos.figshare.com
    xls
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Javad Hemmatian; Rassoul Hajizadeh; Fakhroddin Nazari (2025). A comparison of the RN-SMOTE, SMOTE-Tomek Link, SMOTE-ENN, and the proposed 1CRN-SMOTE methods on the Blood and Health-risk datasets is presented, based on various classification metrics using the Random Forest classifier. [Dataset]. http://doi.org/10.1371/journal.pone.0317396.t008
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Javad Hemmatian; Rassoul Hajizadeh; Fakhroddin Nazari
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A comparison of the RN-SMOTE, SMOTE-Tomek Link, SMOTE-ENN, and the proposed 1CRN-SMOTE methods on the Blood and Health-risk datasets is presented, based on various classification metrics using the Random Forest classifier.

  5. f

    Data from: Dataset for classification of signaling proteins based on...

    • figshare.com
    • portalcientifico.sergas.es
    • +1more
    txt
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Fernandez-Lozano; Cristian Robert Munteanu (2016). Dataset for classification of signaling proteins based on molecular star graph descriptors using machine-learning models [Dataset]. http://doi.org/10.6084/m9.figshare.1330132.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Authors
    Carlos Fernandez-Lozano; Cristian Robert Munteanu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The positive group of 608 signaling protein sequences was downloaded as FASTA format from Protein Databank (Berman et al., 2000) by using the “Molecular Function Browser” in the “Advanced Search Interface” (“Signaling (GO ID23052)”, protein identity cut-off = 30%). The negative group of 2077 non-signaling proteins was downloaded as the PISCES CulledPDB (http://dunbrack.fccc.edu/PISCES.php) (Wang & R. L. Dunbrack, 2003) (November 19th, 2012) using identity (degree of correspondence between two sequences) less than 20%, resolution of 1.6 Å and R-factor 0.25. The full dataset is containing 2685 FASTA sequences of protein chains from the PDB databank: 608 are signaling proteins and 2077 are non-signaling peptides. This kind of unbalanced data is not the most suitable to be used as an input for learning algorithms because the results would present a high sensitivity and low specificity; learning algorithms would tend to classify most of samples as part of the most common group. To avoid this situation, a pre-processing stage is needed in order to get a more balanced dataset, in this case by means of the synthetic minority oversampling technique (SMOTE). In short, SMOTE provides a more balanced dataset using an expansion of the lower class by creating new samples, interpolating other minority-class samples. After this pre-processing, the final dataset is composed of 1824 positive samples (signaling protein chains) and 2432 negative cases (non-signaling protein chains). Paper is available at: http://dx.doi.org/10.1016/j.jtbi.2015.07.038

    Please cite: Carlos Fernandez-Lozano, Rubén F. Cuiñas, José A. Seoane, Enrique Fernández-Blanco, Julian Dorado, Cristian R. Munteanu, Classification of signaling proteins based on molecular star graph descriptors using Machine Learning models, Journal of Theoretical Biology, Volume 384, 7 November 2015, Pages 50-58, ISSN 0022-5193, http://dx.doi.org/10.1016/j.jtbi.2015.07.038.(http://www.sciencedirect.com/science/article/pii/S0022519315003999)

  6. WUSTL_IIoT_2021_Updated

    • kaggle.com
    zip
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M S Kumar Reddy (2025). WUSTL_IIoT_2021_Updated [Dataset]. https://www.kaggle.com/datasets/mskrcnis/wustl-iiot-2021-updated
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 21, 2025
    Authors
    M S Kumar Reddy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This binary dataset is based on “WUSTL-IIoT-2021: A New Dataset for Industrial IoT Intrusion Detection Systems” (Zolanvari et al., 2021), originally published on IEEE DataPort (https://doi.org/10.21227/h5c2-dq55) under a CC BY 4.0 license and also at "https://www.cse.wustl.edu/~jain/iiot2/index.html".

    This version is fr binary classification of the IIoT traffic flows as attacks or not.

    It includes

    1. The original Dataset.

    2. The corrected dataset In the original release, the IdleTime column recorded the exact end time of the last occurrence of the same flow, rather than indicating the time gap between the current flow's start time and the previous occurrence's end time. The correction ensures that IdleTime now accurately reflects this intended temporal relationship, thereby improving the consistency and reliability of the time-based features for subsequent machine learning analysis.

    3. The unbalanced train data and the test dataset are derived from the corrected dataset.

    4. The balanced train dataset using SMOTE, ENN, & LOF.

  7. m

    Montreal Road Collision Dataset (2012-2021)

    • data.mendeley.com
    Updated Aug 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bappa Muktar (2024). Montreal Road Collision Dataset (2012-2021) [Dataset]. http://doi.org/10.17632/gg8c7t3v54.1
    Explore at:
    Dataset updated
    Aug 14, 2024
    Authors
    Bappa Muktar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is derived from the public dataset of road collisions that occurred in Montreal, which is accessible at https://www.donneesquebec.ca/recherche/dataset/vmtl-collisions-routieres. Unlike the original dataset, this dataset has been preprocessed (handling of missing data, data rebalancing via the SMOTE-ENN algorithm, etc.), and categorical variables have been encoded, making it ready for machine learning and other tasks. The .pkl file containing the encoding and the notebook demonstrating how to use the .pkl file are provided. For more details, please refer to the table below, which represents the data dictionary of this dataset. This dataset is shared under the Attribution License (CC-BY 4.0).

    If you use this dataset for publication, please cite the following reference: Muktar, B.; Fono, V. Toward Safer Roads: Predicting the Severity of Traffic Accidents in Montreal Using Machine Learning. Electronics 2024, 13, 3036. https://doi.org/10.3390/electronics13153036

  8. f

    A comparative analysis of earlier studies.

    • plos.figshare.com
    xls
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh (2024). A comparative analysis of earlier studies. [Dataset]. http://doi.org/10.1371/journal.pone.0292100.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.

  9. e

    Machine learning methods with Fermi-LAT catalogs - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Apr 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Machine learning methods with Fermi-LAT catalogs - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/8cede587-6165-5165-a19d-9f1729893aad
    Explore at:
    Dataset updated
    Apr 28, 2023
    Description

    Classification of sources is one of the most important tasks in astronomy. Sources detected in one wavelength band, for example using gamma rays, may have several possible associations in other wavebands, or there may be no plausible association candidates. In this work we aim to determine the probabilistic classification of unassociated sources in the third Fermi Large Area Telescope (LAT) point source catalog (3FGL) and the fourth Fermi LAT data release 2 point source catalog (4FGL-DR2) using two classes - pulsars and active galactic nuclei (AGNs) - or three classes - pulsars, AGNs, and "OTHER" sources. We use several machine learning (ML) methods to determine a probabilistic classification of Fermi-LAT sources.We evaluate the dependence of results on the meta parameters of the ML methods, such as the maximal depth of the trees in tree-based classification methods and the number of neurons in neural networks. We determine a probabilistic classification of both associated and unassociated sources in the 3FGL and 4FGL-DR2 catalogs. We cross-check the accuracy by comparing the predicted classes of unassociated sources in 3FGL with their associations in 4FGL-DR2 for cases where such associations exist. We find that in the two-class case it is important to correct for the presence of OTHER sources among the unassociated ones in order to realistically estimate the number of pulsars and AGNs.We find that the three-class classification, despite different types of sources in the OTHER class, has a similar performance as the two-class classification in terms of reliability diagrams and, at the same time, it does not require adjustment due to presence of the OTHER sources among the unassociated sources. We show an example of the use of the probabilistic catalogs for population studies, which include associated and unassociated sources. Cone search capability for table J/A+A/660/A87/cat1 (PSR candidates using both catalogs) Cone search capability for table J/A+A/660/A87/cat2 (3FGL 2-class classification) Cone search capability for table J/A+A/660/A87/cat3 (3FGL 2-class using SMOTE) Cone search capability for table J/A+A/660/A87/cat4 (3FGL 3-class classification) Cone search capability for table J/A+A/660/A87/cat5 (3FGL 3-class using SMOTE) Cone search capability for table J/A+A/660/A87/cat6 (OTHER candidates using 4FGL-DR2)

  10. f

    Table_3_Interpretable machine learning model to predict surgical difficulty...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Feb 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dong, Xiaoqiang; Shi, Bo; Yuan, Zihan; Li, Ruijie; Wan, Daiwei; Yu, Miao (2024). Table_3_Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001405290
    Explore at:
    Dataset updated
    Feb 6, 2024
    Authors
    Dong, Xiaoqiang; Shi, Bo; Yuan, Zihan; Li, Ruijie; Wan, Daiwei; Yu, Miao
    Description

    BackgroundLaparoscopic total mesorectal excision (LaTME) is standard surgical methods for rectal cancer, and LaTME operation is a challenging procedure. This study is intended to use machine learning to develop and validate prediction models for surgical difficulty of LaTME in patients with rectal cancer and compare these models’ performance.MethodsWe retrospectively collected the preoperative clinical and MRI pelvimetry parameter of rectal cancer patients who underwent laparoscopic total mesorectal resection from 2017 to 2022. The difficulty of LaTME was defined according to the scoring criteria reported by Escal. Patients were randomly divided into training group (80%) and test group (20%). We selected independent influencing features using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression method. Adopt synthetic minority oversampling technique (SMOTE) to alleviate the class imbalance problem. Six machine learning model were developed: light gradient boosting machine (LGBM); categorical boosting (CatBoost); extreme gradient boost (XGBoost), logistic regression (LR); random forests (RF); multilayer perceptron (MLP). The area under receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity and F1 score were used to evaluate the performance of the model. The Shapley Additive Explanations (SHAP) analysis provided interpretation for the best machine learning model. Further decision curve analysis (DCA) was used to evaluate the clinical manifestations of the model.ResultsA total of 626 patients were included. LASSO regression analysis shows that tumor height, prognostic nutrition index (PNI), pelvic inlet, pelvic outlet, sacrococcygeal distance, mesorectal fat area and angle 5 (the angle between the apex of the sacral angle and the lower edge of the pubic bone) are the predictor variables of the machine learning model. In addition, the correlation heatmap shows that there is no significant correlation between these seven variables. When predicting the difficulty of LaTME surgery, the XGBoost model performed best among the six machine learning models (AUROC=0.855). Based on the decision curve analysis (DCA) results, the XGBoost model is also superior, and feature importance analysis shows that tumor height is the most important variable among the seven factors.ConclusionsThis study developed an XGBoost model to predict the difficulty of LaTME surgery. This model can help clinicians quickly and accurately predict the difficulty of surgery and adopt individualized surgical methods.

  11. m

    Data from: Mental issues, internet addiction and quality of life predict...

    • data.mendeley.com
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andras Matuz (2024). Mental issues, internet addiction and quality of life predict burnout among Hungarian teachers: a machine learning analysis [Dataset]. http://doi.org/10.17632/2yy4j7rgvg.1
    Explore at:
    Dataset updated
    Jul 12, 2024
    Authors
    Andras Matuz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Burnout is usually defined as a state of emotional, physical, and mental exhaustion that affects people in various professions (e.g. physicians, nurses, teachers). The consequences of burnout involve decreased motivation, productivity, and overall diminished well-being. The machine learning-based prediction of burnout has therefore become the focus of recent research. In this study, the aim was to detect burnout using machine learning and to identify its most important predictors in a sample of Hungarian high-school teachers. Methods: The final sample consisted of 1,576 high-school teachers (522 male), who completed a survey including various sociodemographic and health-related questions and psychological questionnaires. Specifically, depression, insomnia, internet habits (e.g. when and why one uses the internet) and problematic internet usage were among the most important predictors tested in this study. Supervised classification algorithms were trained to detect burnout assessed by two well-known burnout questionnaires. Feature selection was conducted using recursive feature elimination. Hyperparameters were tuned via grid search with 5-fold cross-validation. Due to class imbalance, class weights (i.e. cost-sensitive learning), downsampling and a hybrid method (SMOTE-ENN) were applied in separate analyses. The final model evaluation was carried out on a previously unseen holdout test sample. Results: Burnout was detected in 19.7% of the teachers included in the final dataset. The best predictive performance on the holdout test sample was achieved by support vector machine with SMOTE-ENN (AUC = .942; balanced accuracy = .868, sensitivity = .898; specificity = .837). The best predictors of burnout were Beck’s Depression Inventory scores, Athen’s Insomnia Scale scores, subscales of the Problematic Internet Use Questionnaire and self-reported current health status. Conclusions: The performances of the algorithms were comparable with previous studies; however, it is important to note that we tested our models on previously unseen holdout samples suggesting higher levels of generalizability. Another remarkable finding is that besides depression and insomnia, other variables such as problematic internet use and time spent online also turned out to be important predictors of burnout.

  12. Classification result classifiers using TF-IDF with SMOTE.

    • plos.figshare.com
    xls
    Updated May 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khaled Alnowaiser (2024). Classification result classifiers using TF-IDF with SMOTE. [Dataset]. http://doi.org/10.1371/journal.pone.0302304.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 28, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Khaled Alnowaiser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Classification result classifiers using TF-IDF with SMOTE.

  13. Data from: Image-based automated species identification: Can virtual data...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Jun 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Morris Klasen; Morris Klasen; Jonas Eberle; Dirk Ahrens; Volker Steinhage; Jonas Eberle; Dirk Ahrens; Volker Steinhage (2022). Image-based automated species identification: Can virtual data augmentation overcome problems of insufficient sampling? [Dataset]. http://doi.org/10.5061/dryad.f1vhhmgx9
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 4, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Morris Klasen; Morris Klasen; Jonas Eberle; Dirk Ahrens; Volker Steinhage; Jonas Eberle; Dirk Ahrens; Volker Steinhage
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Automated species identification and delimitation is challenging, particularly in rare and thus often scarcely sampled species, which do not allow sufficient discrimination of infraspecific versus interspecific variation. Typical problems arising from either low or exaggerated interspecific morphological differentiation are best met by automated methods of machine learning that learn efficient and effective species identification from training samples. However, limited infraspecific sampling remains a key challenge also in machine learning.

    In this study, we assessed whether a data augmentation approach may help to overcome the problem of scarce training data in automated visual species identification. The stepwise augmentation of data comprised image rotation as well as visual and virtual augmentation. The visual data augmentation applies classic approaches of data augmentation and generation of artificial images using a Generative Adversarial Networks (GAN) approach. Descriptive feature vectors are derived from bottleneck features of a VGG-16 convolutional neural network (CNN) that are then stepwise reduced in dimensionality using Global Average Pooling and PCA to prevent overfitting. Finally, data augmentation employs synthetic additional sampling in feature space by an oversampling algorithm in vector space (SMOTE). Applied on four different image datasets, which include scarab beetle genitalia (Pleophylla, Schizonycha) as well as wing patterns of bees (Osmia) and cattleheart butterflies (Parides), our augmentation approach outperformed a deep learning baseline approach by means of resulting identification accuracy with non-augmented data as well as a traditional 2D morphometric approach (Procrustes analysis of scarab beetle genitalia).

  14. f

    Classification results of machine learning models using BoW with SMOTE.

    • figshare.com
    xls
    Updated Jun 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eysha Saad; Saima Sadiq; Ramish Jamil; Furqan Rustam; Arif Mehmood; Gyu Sang Choi; Imran Ashraf (2023). Classification results of machine learning models using BoW with SMOTE. [Dataset]. http://doi.org/10.1371/journal.pone.0270327.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 17, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Eysha Saad; Saima Sadiq; Ramish Jamil; Furqan Rustam; Arif Mehmood; Gyu Sang Choi; Imran Ashraf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Classification results of machine learning models using BoW with SMOTE.

  15. f

    Confusion matrix.

    • plos.figshare.com
    xls
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh (2024). Confusion matrix. [Dataset]. http://doi.org/10.1371/journal.pone.0292100.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.

  16. f

    Additional file 1 of Implementation of ensemble machine learning algorithms...

    • springernature.figshare.com
    txt
    Updated Jun 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdu Rehaman Pasha Syed; Rahul Anbalagan; Anagha S. Setlur; Chandrashekar Karunakaran; Jyoti Shetty; Jitendra Kumar; Vidya Niranjan (2023). Additional file 1 of Implementation of ensemble machine learning algorithms on exome datasets for predicting early diagnosis of cancers [Dataset]. http://doi.org/10.6084/m9.figshare.21592784.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    figshare
    Authors
    Abdu Rehaman Pasha Syed; Rahul Anbalagan; Anagha S. Setlur; Chandrashekar Karunakaran; Jyoti Shetty; Jitendra Kumar; Vidya Niranjan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 1. The proposed ensemble learning model carried out on the synthetic dataset generated by the CTGAN method.

  17. The top five rules based on association rule learning with SMOTE for each...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aziz Zafar; Ziad Attia; Mehret Tesfaye; Sosina Walelign; Moges Wordofa; Dessie Abera; Kassu Desta; Aster Tsegaye; Ahmet Ay; Bineyam Taye (2023). The top five rules based on association rule learning with SMOTE for each infection outcome. [Dataset]. http://doi.org/10.1371/journal.pntd.0010517.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Aziz Zafar; Ziad Attia; Mehret Tesfaye; Sosina Walelign; Moges Wordofa; Dessie Abera; Kassu Desta; Aster Tsegaye; Ahmet Ay; Bineyam Taye
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For each infection, the five rules with the highest lift values are chosen and sorted. The combinations of risk factors specified on the left leads to the given infection.

  18. f

    Data_Sheet 1_Prediction Is a Balancing Act: Importance of Sampling Methods...

    • frontiersin.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Priyanka Banerjee; Frederic O. Dehnbostel; Robert Preissner (2023). Data_Sheet 1_Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets.PDF [Dataset]. http://doi.org/10.3389/fchem.2018.00362.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Priyanka Banerjee; Frederic O. Dehnbostel; Robert Preissner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Increase in the number of new chemicals synthesized in past decades has resulted in constant growth in the development and application of computational models for prediction of activity as well as safety profiles of the chemicals. Most of the time, such computational models and its application must deal with imbalanced chemical data. It is indeed a challenge to construct a classifier using imbalanced data set. In this study, we analyzed and validated the importance of different sampling methods over non-sampling method, to achieve a well-balanced sensitivity and specificity of a machine learning model trained on imbalanced chemical data. Additionally, this study has achieved an accuracy of 93.00%, an AUC of 0.94, F1 measure of 0.90, sensitivity of 96.00% and specificity of 91.00% using SMOTE sampling and Random Forest classifier for the prediction of Drug Induced Liver Injury (DILI). Our results suggest that, irrespective of data set used, sampling methods can have major influence on reducing the gap between sensitivity and specificity of a model. This study demonstrates the efficacy of different sampling methods for class imbalanced problem using binary chemical data sets.

  19. f

    Data from: Prediction of 35 Target Per- and Polyfluoroalkyl Substances...

    • figshare.com
    • acs.figshare.com
    txt
    Updated Aug 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jialin Dong; Gabriel Tsai; Christopher I. Olivares (2023). Prediction of 35 Target Per- and Polyfluoroalkyl Substances (PFASs) in California Groundwater Using Multilabel Semisupervised Machine Learning [Dataset]. http://doi.org/10.1021/acsestwater.3c00134.s002
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset provided by
    ACS Publications
    Authors
    Jialin Dong; Gabriel Tsai; Christopher I. Olivares
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Comprehensive monitoring of perfluoroalkyl and polyfluoroalkyl substances (PFASs) is challenging because of the high analytical cost and an increasing number of analytes. We developed a machine learning pipeline to understand environmental features influencing PFAS profiles in groundwater. By examining 23 public data sets (2016–2022) in California, we built a state-wide groundwater database (25,000 observations across 4200 wells) encompassing contamination sources, weather, air quality, soil, hydrology, and groundwater quality (PFASs and cocontaminants). We used supervised learning to prescreen total PFAS concentrations above 70 ng/L and multilabel semisupervised learning to predict 35 individual PFAS concentrations above 2 ng/L. Random forest with ADASYN oversampling performed the best for total PFASs (AUROC 99%). XGBoost with SMOTE oversampling achieved the AUROC of 73–100% for individual PFAS prediction. Contamination sources and soil variables contributed the most to accuracy. Individual PFASs were strongly correlated within each PFAS’s subfamily (i.e., short- vs long-chain PFCAs, sulfonamides). These associations improved prediction performance using classifier chains, which predicts a PFAS based on previously predicted species. We applied the model to reconstruct PFAS profiles in groundwater wells with missing data in previous years. Our approach can complement monitoring programs of environmental agencies to validate previous investigation results and prioritize sites for future PFAS sampling.

  20. f

    The average values of evaluation metrics on ILDP, QSAR, Blood and Health...

    • plos.figshare.com
    xls
    Updated Feb 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Javad Hemmatian; Rassoul Hajizadeh; Fakhroddin Nazari (2025). The average values of evaluation metrics on ILDP, QSAR, Blood and Health risk imbalanced datasets using SVM classifiers and 10-fold cross validation methodology. [Dataset]. http://doi.org/10.1371/journal.pone.0317396.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Javad Hemmatian; Rassoul Hajizadeh; Fakhroddin Nazari
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average values of evaluation metrics on ILDP, QSAR, Blood and Health risk imbalanced datasets using SVM classifiers and 10-fold cross validation methodology.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nihal Abuzinadah; Muhammad Umer; Abid Ishaq; Abdullah Al Hejaili; Shtwai Alsubai; Ala’ Abdulmajid Eshmawi; Abdullah Mohamed; Imran Ashraf (2023). Performance of machine learning models using SMOTE-balanced dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0293061.t004

Performance of machine learning models using SMOTE-balanced dataset.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Nov 8, 2023
Dataset provided by
PLOS ONE
Authors
Nihal Abuzinadah; Muhammad Umer; Abid Ishaq; Abdullah Al Hejaili; Shtwai Alsubai; Ala’ Abdulmajid Eshmawi; Abdullah Mohamed; Imran Ashraf
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Performance of machine learning models using SMOTE-balanced dataset.

Search
Clear search
Close search
Google apps
Main menu