This dataset represents the counts of those individuals who have been determined to have a share of cost (SOC) obligation, which is the monthly amount of medical expenses they must incur before they are eligible to receive Medi-Cal benefits. The dataset includes individuals who have a met or unmet monthly SOC obligation. Individuals who have not met their monthly SOC obligation are not eligible for Medi-Cal. SOC obligations are calculated during the eligibility determination process based on household income.
The Austin Fire Department's Standard of Coverage (SOC) is goal is to reach 90% of our emergency incidents within 8 mins from call-receipt to on-scene.
https://networkrepository.com/policy.phphttps://networkrepository.com/policy.php
Slashdot online social network - A a technology-related news website known for its specific user community. The dataset cotains friend/foe tags between the users of Slashdot.
This dataset provides an estimate of soil organic carbon (SOC) in the top one meter of soil across Mexico at a 90-m resolution for the period 1999-2009. Carbon estimates (kg/m2) are based on a field data collection of 2852 soil profiles by the National Institute for Statistics and Geography (INEGI). The profile data were used for the development of a predictive model along with a set of environmental covariates that were harmonized in a regular grid of 90x90 m2 across all Mexican states. The base of reference was the digital elevation model (DEM) of the INEGI at 90-m spatial resolution. A model ensemble of regression trees with a recursive elimination of variables explained 54% of the total variability using a cross-validation technique of independent samples. The error associated with the predictive model estimates of SOC is provided. A summary of the total estimated SOC per state, statistical description of the modeled SOC data, and the number of pixels modeled for each state are also provided.
The Annual Population Survey (APS) household datasets are produced annually and are available from 2004 (Special Licence) and 2006 (End User Licence). They allow production of family and household labour market statistics at local areas and for small sub-groups of the population across the UK. The household data comprise key variables from the Labour Force Survey (LFS) and the APS 'person' datasets. The APS household datasets include all the variables on the LFS and APS person datasets, except for the income variables. They also include key family and household-level derived variables. These variables allow for an analysis of the combined economic activity status of the family or household. In addition, they also include more detailed geographical, industry, occupation, health and age variables.
For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.
Occupation data for 2021 and 2022
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022
End User Licence and Secure Access APS data
Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual estimates of paid hours worked, weekly, hourly and annual earnings for UK employees by sex, and full-time and part-time, by region and four-digit Standard Occupational Classification.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Includes three .csv files. Any analysis is appreciated, even if it is a short one 😎
Benchmarks allow for easy comparison between multiple devices by scoring their performance on a standardized series of tests, and they are useful in many instances: When buying a new phone or tablet
smartphone cpu_stats.csv is the main data. Updated performance rating of smartphone SoCs as of 2022. Includes summary of Geekbench 5 and AnTuTu v9 scores. Includes CPU specs such as clock speed, core count, core config, and GPU.
ML ALL_benchmarks.csv is the Geekbench ML Benchmark data. This tells you how well each smartphone device performs when performing Machine Learning tasks. The data is gathered from user-submitted Geekbench ML results from the Geekbench Browser. To make sure the results accurately reflect the average performance of each device, the dataset only includes devices with at least five unique results in the Geekbench Browser.
antutu android vs ios_v4.csv is the AnTuTu benchmarks data. It includes information about CPU, GPU, MEM, UX and Total score.
Benchmark apps gives your device an overall numerical score as well as individual scores for each test it performs. The overall score is created by adding the results of those individual scores. These score numbers don't mean much on their own, they're just helpful for comparing different devices. For example, if your device's score is 300000, a device with a score of 600000 is about twice as fast. You can use individual test scores to compare the relative performance of specific parts of different devices. For example, you could compare how fast your phone's storage performs compared to another phone's storage.
The first part of the overall score is your CPU score. The CPU score in turn includes the output of CPU Mathematical Operations, CPU Common Algorithms, and CPU Multi-Core. In simpler words, the CPU score means how fast your phone processes commands. Your device's central processing unit (CPU) does most of the number-crunching. A faster CPU can run apps faster, so everything on your device will seem faster. Of course, once you get to a certain point, CPU speed won't affect performance much. However, a faster CPU may still help when running more demanding applications, such as high-end games.
The second part of the overall score is your GPU score. This score is comprised of the output of graphical components like Metal, OpenGL or Vulkan, depending on your device. The GPU score means how well your phone displays 2D and 3D graphics. Your device's graphics processing unit (GPU) handles accelerated graphics. When you play a game, your GPU kicks into gear and renders the 3D graphics or accelerates the shiny 2D graphics. Many interface animations and other transitions also use the GPU. The GPU is optimized for these sorts of graphics operations. The CPU could perform them, but it's more general-purpose and would take more time and battery power. You can say that your GPU does the graphics number-crunching, so a higher score here is better.
The third part of the overall score is your MEM score. The MEM score includes the results of the output of RAM Access, ROM APP IO, ROM Sequential Read and Write, and ROM Random Access. In simpler words, the MEM score means how fast and how much memory your phone possesses. RAM stands for random-access memory; while ROM stands for read-only memory. Your device uses RAM as working memory, while flash storage or an internal SD card is used for long-term storage. The faster it can write to and read data from its RAM, the faster your device will perform. Your RAM is constantly being used on your device, whatever you're doing. While RAM is volatile in nature, ROM is its opposite. RAM mostly stores temporary data, while ROM is used to store permanent data like the firmware of your phone. Both the RAM and ROM make up the memory of your phone, helping it to perform tasks efficiently.
The fourth and final part of the overall score is your UX score. The UX score is made up of the results of the output of the Data Security, Data Processing, Image Processing, User Experience, and Video CTS and Decode tests. The UX score means an overall score that represents how the device's "user experience" will be in the real world. It's a number you can look at to get a feel for a device's overall performance without digging into the above benchmarks or relying too much on the overall score.
Sourced from Geekbench and AnTuTu.
A dataset for soil organic carbon in agricultural systems for the Southeast Asia region
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For this dataset tests were performed on cylindrical 2170 form factor Li-ion battery cells from a Tesla Model 3 electric vehicle. The tests include characterization tests (constant current discharges, HPPC, etc) and electric vehicle drive cycles. A portion of the data is provided openly for use in developing state of charge (SOC) estimation algorithms, and a portion is kept hidden and used for blinded testing of algorithms. Algorithms can be submitted for testing via the portal described in the dataset. The blind modeling tool concept is described in detail in the publication "A Blind Modeling Tool for Standardized Evaluation of Battery State of Charge Estimation Algorithms" and in the included presentation "Tesla 2170 Cell Data and SOC Estimation Blind Modeling Tool – Users Guide".
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
These tables contain the number of online job adverts split by local authority and occupation (SOC 2020).
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset is about: Soil organic carbon (SOC) storage in the Lena River Delta. Please consult parent dataset @ https://doi.org/10.1594/PANGAEA.862961 for more information.
https://networkrepository.com/policy.phphttps://networkrepository.com/policy.php
Location-based online social network - Foursquare is a location-based online social network. The dataset contains a list of all of the user-to-user links.
Abstract copyright UK Data Service and data collection copyright owner.
The Annual Population Survey (APS) household datasets are produced annually and are available from 2004 (Special Licence) and 2006 (End User Licence). They allow production of family and household labour market statistics at local areas and for small sub-groups of the population across the UK. The household data comprise key variables from the Labour Force Survey (LFS) and the APS 'person' datasets. The APS household datasets include all the variables on the LFS and APS person datasets, except for the income variables. They also include key family and household-level derived variables. These variables allow for an analysis of the combined economic activity status of the family or household. In addition, they also include more detailed geographical, industry, occupation, health and age variables.
For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.
Occupation data for 2021 and 2022
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022
End User Licence and Secure Access APS data
Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
This dataset provides 5 x 5 km gridded estimates of soil organic carbon (SOC) across Latin America that were derived from existing point soil characterization data and compiled environmental prediction factors for SOC. This dataset is representative for the period between 1980 to 2000s corresponding with the highest density of observations available in the WoSIS system and the covariates used as prediction factors for soil organic carbon across Latin America. SOC stocks (kg/m2) were estimated for the SOC and bulk density point measurements and a spatially explicit measure of the SOC estimation error was also calculated. A modeling ensemble, using a linear combination of five statistical methods (regression Kriging, random forest, kernel weighted nearest neighbors, partial least squared regression and support vector machines) was applied to the SOC stock data at (1) country-specific and (2) regional scales to develop gridded SOC estimates (kg/m2) for all of Latin America. Uncertainty estimates are provided for the two model predictions based on independent model residuals and their full conditional response to the SOC prediction factors.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset contains the research data (code and measurement data) of the journal article: J. A. Braun, R. Behmann, D. Schmider, W. G. Bessler, "State of charge and state of health diagnosis of batteries with voltage-controlled models", Journal of Power Sources 544 (2022), 231828.
Abstract:
The accurate diagnosis of state of charge (SOC) and state of health (SOH) is of utmost importance for battery users and for battery manufacturers. State diagnosis is commonly based on measuring battery current and using it in Coulomb counters or as input for a current-controlled model. Here we introduce a new algorithm based on measuring battery voltage and using it as input for a voltage-controlled model. We demonstrate the algorithm using fresh and pre-aged lithium-ion battery single cells operated under well-defined laboratory conditions on full cycles, shallow cycles, and a dynamic battery electric vehicle load profile. We show that both SOC and SOH are accurately estimated using a simple equivalent circuit model. The new algorithm is self-calibrating, is robust with respect to cell aging, allows to estimate SOH from arbitrary load profiles, and is numerically simpler than state-of-the-art model-based methods.
Intellectual property information:
The Matlab codes and the research data provided here are under CC-BY-NC-4.0 license. Please note that the algorithms themselves are subject to industrial property rights, including, but not necessarily limited to, German patent DE102019127828B4 and international patent application WO2021073690A2. Any use of the codes and algorithms presented here is subject to these property rights.
Overview of files:
SOC_SOH_simple_model.m: Matlab script performing SOC and SOH diagnosis with the voltage-controlled "simple" equivalent circuit model. The script also reproduces the figures shown in the manuscript.
SOC_SOH_simple_extended.m: Matlab script performing SOC and SOH diagnosis with the voltage-controlled "extended" equivalent circuit model. The script also creates figures of additional data not shown in the manuscript.
Experimental_data_fresh_cell.csv: Tabulated experimental data (time, current, voltage, temperature) of the long-term experiment (99 h total with 1 s resolution) of a fresh lithium-ion cell. The cell is initally completely discharged. The data consist of full cycling, shallow cycling, and WLTP cycling.
Experimental_data_aged_cell.csv: Tabulated experimental data (time, current, voltage, temperature) of the long-term experiment (85 h total with 1 s resolution) of a pre-aged lithium-ion cell. The cell is initally completely discharged. The data consist of full cycling, shallow cycling, and WLTP cycling.
OCV_vs_SOC_curve.csv: Tabulated experimentally-derived open-circuit voltage (OCV) as function of state of charge (SOC). 1001 data points between SOC = 0 and SOC = 1 in increments of 0.001.
readme.txt: Overview of files with a short description.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
A new approach for the estimation of soil organic carbon (SOC) pools north of the tree line has been developed based on synthetic aperture radar (SAR; ENVISAT Advanced SAR Global Monitoring mode) data. SOC values are directly determined from backscatter values instead of upscaling using land cover or soil classes. The multi-mode capability of SAR allows application across scales. It can be shown that measurements in C band under frozen conditions represent vegetation and surface structure properties which relate to soil properties, specifically SOC. It is estimated that at least 29 Pg C is stored in the upper 30 cm of soils north of the tree line. This is approximately 25 % less than stocks derived from the soil-map-based Northern Circumpolar Soil Carbon Database (NCSCD). The total stored carbon is underestimated since the established empirical relationship is not valid for peatlands or strongly cryoturbated soils. The approach does, however, provide the first spatially consistent account of soil organic carbon across the Arctic. Furthermore, it could be shown that values obtained from 1 km resolution SAR correspond to accounts based on a high spatial resolution (2 m) land cover map over a study area of about 7 × 7 km in NE Siberia. The approach can be also potentially transferred to medium-resolution C-band SAR data such as ENVISAT ASAR Wide Swath with ~120 m resolution but it is in general limited to regions without woody vegetation. Global Monitoring-mode-derived SOC increases with unfrozen period length. This indicates the importance of this parameter for modelling of the spatial distribution of soil organic carbon storage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Austin's data portal activity metrics’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/data-portal-activity-metricse on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Background
Austin's open data portal provides lots of public data about the City of Austin. It also provides portal administrators with behind-the-scenes information about how the portal is used... but that data is mysterious, hard to handle in a spreadsheet, and not located all in one place.
Until now! Authorized city staff used admin credentials to grab this usage data and share it the public. The City of Austin wants to use this data to inform the development of its open data initiative and manage the open data portal more effectively.
This project contains related datasets for anyone to explore. These include site-level metrics, dataset-level metrics, and department information for context. A detailed detailed description of how the files were prepared (along with code) can be found on github here.
Example questions to answer about the data portal
- What parts of the open data portal do people seem to value most?
- What can we tell about who our users are?
- How are our data publishers doing?
- How much data is published programmatically vs manually?
- How data is super fresh? Super stale?
- Whatever you think we should know...
About the files
all_views_20161003.csv
There is a resource available to portal administrators called "Dataset of datasets". This is the export of that resource, and it was captured on Oct 3, 2016. It contains a summary of the assets available on the data portal. While this file contains over 1400 resources (such as views, charts, and binary files), only 363 are actual tabular datasets.
table_metrics_ytd.csv
This file contains information about the 363 tabular datasets on the portal. Activity metrics for an individual dataset can be accessed by calling Socrata's views/metrics API and passing along the dataset's unique ID, a time frame, and admin credentials. The process of obtaining the 363 identifiers, calling the API, and staging the information can be reviewed in the python notebook here.
site_metrics.csv
This file is the export of site-level stats that Socrata generates using a given time frame and grouping preference. This file contains records about site usage each month from Nov 2011 through Sept 2016. By the way, it contains 285 columns... and we don't know what many of them mean. But we are determined to find out!! For a preliminary exploration of the columns and what portal-related business processes to which they might relate, check out the notes in this python notebook here
city_departments_in_current_budget.csv
This file contains a list of all City of Austin departments according to how they're identified in the most recently approved budget documents. Could be helpful for getting to know more about who the publishers are.
crosswalk_to_budget_dept.csv
The City is in the process of standardizing how departments identify themselves on the data portal. In the meantime, here's a crosswalk from the department values observed in
all_views_20161003.csv
to the department names that appear in the City's budgetThis dataset was created by Hailey Pate and contains around 100 samples along with Di Sync Success, Browser Firefox 19, technical information and other features such as: - Browser Firefox 33 - Di Sync Failed - and more.
- Analyze Sf Query Error User in relation to Js Page View Admin
- Study the influence of Browser Firefox 37 on Datasets Created
- More datasets
If you use this dataset in your research, please credit Hailey Pate
--- Original source retains full ownership of the source dataset ---
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Ministry of Health. For more information, visit https://data.gov.sg/datasets/d_e818f045a9681df2db90a493803a60d2/view
The Global One-Eighth Degree Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01, data set consists of global urban, rural, and total population data for the base year 2000, and population projections at ten-year intervals for 2010-2100 at a resolution of one-eighth degree (7.5 arc-minutes), consistent both quantitatively and qualitatively with the SSPs. Spatial demographic data are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SOC prediction is of great value to electric vehicle status assessment. Informer model is better than other models in SOC prediction, but there is still a gap in practical application. Therefore, based on the health assessment algorithm, a new optimized Informer model is proposed to predict SOC. Firstly, the health assessment is carried out through the historical running data of the electric vehicle to obtain the health matrix. Then, the health matrix is used to improve Encoder and Decoder modules and improve the prediction accuracy and speed of Informer model. Subsequently, the health matrix is utilized to optimize the prediction logic, reduce the influence of truncation error, and further improve the SOC prediction accuracy. Finally, using the Informer model before and after optimization, SOC prediction is performed using four different datasets. The results indicate that after optimizing the En-De module of Informer, prediction accuracy improved by approximately 15%, with prediction speed increasing by about 100%. Furthermore, optimizing the prediction logic to reduce truncation error further enhanced Informer’s prediction accuracy by around 20%.
This dataset represents the counts of those individuals who have been determined to have a share of cost (SOC) obligation, which is the monthly amount of medical expenses they must incur before they are eligible to receive Medi-Cal benefits. The dataset includes individuals who have a met or unmet monthly SOC obligation. Individuals who have not met their monthly SOC obligation are not eligible for Medi-Cal. SOC obligations are calculated during the eligibility determination process based on household income.