100+ datasets found
  1. Data from: College Completion Dataset

    • kaggle.com
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). College Completion Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/boost-student-success-with-college-completion-da
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 6, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    College Completion Dataset

    Graduation Rates, Race, Efficiency Measures and More

    By Jonathan Ortiz [source]

    About this dataset

    This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.

    At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately

    When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .

    When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .

    When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .

    All this analysis gives an opportunity get a holistic overview about performance , potential deficits &

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.

    In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.

    Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!

    When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...

  2. c

    Student Enrollment by Grade - Datasets - CTData.org

    • data.ctdata.org
    Updated Apr 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Student Enrollment by Grade - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/student-enrollment-by-grade
    Explore at:
    Dataset updated
    Apr 27, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Student Enrollment reports the number of enrolled students per year, per grade.

  3. o

    School information and student demographics

    • data.ontario.ca
    • datasets.ai
    • +1more
    xlsx
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education (2025). School information and student demographics [Dataset]. https://data.ontario.ca/dataset/school-information-and-student-demographics
    Explore at:
    xlsx(1565910), xlsx(1550796), xlsx(1566878), xlsx(1565304), xlsx(1562805), xlsx(1459001), xlsx(1475787), xlsx(1462006), xlsx(1460629), xlsx(1547704), xlsx(1567330), xlsx(1580734), xlsx(1492217), xlsx(1462064)Available download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    Education
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    May 1, 2025
    Area covered
    Ontario
    Description

    Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools.

    How Are We Protecting Privacy?

    Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented.

      * Percentages depicted as 0 may not always be 0 values as in certain situations the values have been randomly rounded down or there are no reported results at a school for the respective indicator. * Percentages depicted as 100 are not always 100, in certain situations the values have been randomly rounded up.
    The school enrolment totals have been rounded to the nearest 5 in order to better protect and maintain student privacy.

    The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible.

    This information is also available on the Ministry of Education's School Information Finder website by individual school.

    Descriptions for some of the data types can be found in our glossary.

    School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.

  4. Simulated College Student Record Data

    • kaggle.com
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Hart (2023). Simulated College Student Record Data [Dataset]. https://www.kaggle.com/datasets/gopokes0914/simdata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ryan Hart
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1556959%2F013e17fd6630de18102315b20ebba89b%2FSimulated%20College%20Headcount%20Data%20CODEBOOK.jpg?generation=1687210619889162&alt=media" alt="">

  5. d

    2020 - 2021 Diversity Report

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2020 - 2021 Diversity Report [Dataset]. https://catalog.data.gov/dataset/2020-2021-diversity-report
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students

  6. d

    School Attendance by Town, 2022-2023

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Sep 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). School Attendance by Town, 2022-2023 [Dataset]. https://catalog.data.gov/dataset/school-attendance-by-town-2022-2023
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    data.ct.gov
    Description

    This dataset includes the attendance rate for public school students PK-12 by town during the 2022-2023 school year. Attendance rates are provided for each town for the overall student population and for the high needs student population. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch. When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.

  7. c

    Student Performance Dataset

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Student Performance Dataset [Dataset]. https://cubig.ai/store/products/358/student-performance-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Student Performance Dataset is a survey of secondary school mathematics students and is a dataset containing a variety of information in a table format, including student demographics, family environment, parents' education and occupation, health, family relationships, and grades.

    2) Data Utilization (1) Student Performance Dataset has characteristics that: • Each row contains a total of 33 different characteristics, including school ID, gender, age, family size, parents' educational level and occupation, family relationship, health status, and grades. • It is suitable for a variety of data analysis and prediction exercises, including regression analysis and categorical variable imbalance analysis, including the target variable Grade. (2) Student Performance Dataset can be used to: • Analyzing academic achievement prediction and influencing factors: It can be used to analyze the impact of various factors such as student's background, family environment, and parental characteristics on grades and to develop a grade prediction model. • Establishing educational policies and customized support strategies: Based on student-specific characteristics and grade data, it can be applied to establishing educational policies such as closing educational gaps, supporting vulnerable student groups, and providing customized learning guidance.

  8. d

    Student Enrollment 2011-12 School Year

    • catalog.data.gov
    • data.wa.gov
    Updated May 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2025). Student Enrollment 2011-12 School Year [Dataset]. https://catalog.data.gov/dataset/student-enrollment-2011-12-school-year
    Explore at:
    Dataset updated
    May 10, 2025
    Dataset provided by
    data.wa.gov
    Description

    This file includes enrollment data from 2011-12 school year. Data are disaggregated by school, district, and state levels and include counts of students by the following groups: grade level, gender, race/ethnicity, and student programs, and special characteristics. Please review the notes below for more information.

  9. International Student Demographics

    • kaggle.com
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Takumi Watanabe (2024). International Student Demographics [Dataset]. https://www.kaggle.com/datasets/webdevbadger/international-student-demographics
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Kaggle
    Authors
    Takumi Watanabe
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Examining international student demographics helps educational institutions better understand the diverse backgrounds and requirements of their global student community. This dataset provides insights into a variety of aspects including, gender, marital status, Visa type, origin of country, academic level, and much more.

    For use case and analysis reference, please take a look at this notebook "https://www.kaggle.com/code/webdevbadger/international-student-demographics-analysis">International Student Demographics Analysis .

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16711385%2Fefde694297c2830c0058032eae820358%2Ftop-countries.png?generation=1704958145733418&alt=media" alt="">

    Feature Descriptions

    academic.csv

    • year: The year. The format is YYYY/YY.
    • students: The number of students.
    • us_students: The number of non-international students.
    • undergraduate: The number of undergraduate students.
    • graduate: The number of graduate students.
    • non_degree: The number of non-degree students.
    • opt: The number of OPT students. OPT stands for Optional Practical Training.

    academic_detail.csv

    • year: The year. The format is YYYY/YY.
    • academic_type: The academic type. One of ["Undergraduate", "Graduate", "Non-Degree", "OPT"],
    • academic_level: The academic level. One of ["Associate's", "Bachelor's", "Master's", 'Doctoral', "Professional", "Graduate, Unspecified", "Non-Degree, Intensive English", "Non-Degree, Other", "OPT"].
    • students: The number of students.

    field_of_study.csv

    • year: The year. The format is YYYY/YY.
    • field_of_study: The field of the study.
    • major: The major of the study.
    • students: The number of students.

    origin.csv

    • year: The year. The format is YYYY/YY.
    • origin_region: The region of origin, such as Asia, Europe, and North America.
    • origin: The origin, such as Canada, China, and India.
    • academic_type: The academic type. One of ["Undergraduate", "Graduate", "Non-Degree", "OPT"].
    • students: The number of students.

    source_of_fund.csv

    • year: The year. The format is YYYY/YY.
    • academic_type: The academic type. One of ["Undergraduate", "Graduate", "Non-Degree", "OPT"].
    • source_type: The fund source type. One of ["International", "U.S.", "Other"].
    • source_of_fund: The source of fund. One of [ "Personal and Family", "Foreign Government or University", "Foreign Private Sponsor", "International Organization", "Current Employment", "U.S. College or University", "U.S. Government", "U.S. Private Sponsor", "Other Sources"].
    • students: The number of students.

    status.csv

    • year: The year. The format is YYYY/YY.
    • female: The number of female students.
    • male: The number of male students.
    • single: The number of non-married students.
    • married: The number of married students.
    • full_time: The number of full-time students.
    • part_time: The number of part-time students.
    • visa_f: The number of students with F Visa.
    • visa_j: The number of students with J Visa.
    • visa_other: The number of students with other types of Visas.

    Acknowledgement

    OpenDoorsData.org

  10. d

    2020-2021 Demographic Snapshot School

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2020-2021 Demographic Snapshot School [Dataset]. https://catalog.data.gov/dataset/2020-2021-demographic-snapshot-school
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    To provide a snapshot of citywide student enrollment and demographic information across multiple years. Data is collected using multiple data sources, including DOE's Audited Register, biographic data from Automate The Schools (ATS) system and the Location Code Generation and Management System (LCGMS). Data can be used to view citywide demographic and enrollment trends over time. Enrollment counts are based on the October 31 Audited Register for each school year. Please note that October 31 enrollment is not audited for charter schools or Pre-K Early Education Centers(NYCEECs). Charter schools are required to submit enrollment as of BEDS Day the first Wednesday in October to the New York State Education Department of Education. Enrollment counts will exceed operational enrollment counts due the fact that long term absence (LTA) students are excluded for funding purposes.

  11. W

    Student Enrollment and Attendance Data by Teaching Modality - 2020 - 2021

    • opendata.winchesterva.gov
    • data.virginia.gov
    xlsx
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia State Data (2024). Student Enrollment and Attendance Data by Teaching Modality - 2020 - 2021 [Dataset]. https://opendata.winchesterva.gov/dataset/student-enrollment-and-attendance-data-by-teaching-modality-2020-2021
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Department of Education
    Authors
    Virginia State Data
    Description

    Student enrollment data disaggregated by students from low-income families, students from each racial and ethnic group, gender, English learners, children with disabilities, children experiencing homelessness, children in foster care, and migratory students for each mode of instruction.

  12. u

    Data from: DIPSEER: A Dataset for In-Person Student Emotion and Engagement...

    • observatorio-cientifico.ua.es
    • scidb.cn
    Updated 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel; Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel (2025). DIPSEER: A Dataset for In-Person Student Emotion and Engagement Recognition in the Wild [Dataset]. https://observatorio-cientifico.ua.es/documentos/67321d21aea56d4af0484172
    Explore at:
    Dataset updated
    2025
    Authors
    Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel; Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel
    Description

    Data DescriptionThe DIPSER dataset is designed to assess student attention and emotion in in-person classroom settings, consisting of RGB camera data, smartwatch sensor data, and labeled attention and emotion metrics. It includes multiple camera angles per student to capture posture and facial expressions, complemented by smartwatch data for inertial and biometric metrics. Attention and emotion labels are derived from self-reports and expert evaluations. The dataset includes diverse demographic groups, with data collected in real-world classroom environments, facilitating the training of machine learning models for predicting attention and correlating it with emotional states.Data Collection and Generation ProceduresThe dataset was collected in a natural classroom environment at the University of Alicante, Spain. The recording setup consisted of six general cameras positioned to capture the overall classroom context and individual cameras placed at each student’s desk. Additionally, smartwatches were used to collect biometric data, such as heart rate, accelerometer, and gyroscope readings.Experimental SessionsNine distinct educational activities were designed to ensure a comprehensive range of engagement scenarios:News Reading – Students read projected or device-displayed news.Brainstorming Session – Idea generation for problem-solving.Lecture – Passive listening to an instructor-led session.Information Organization – Synthesizing information from different sources.Lecture Test – Assessment of lecture content via mobile devices.Individual Presentations – Students present their projects.Knowledge Test – Conducted using Kahoot.Robotics Experimentation – Hands-on session with robotics.MTINY Activity Design – Development of educational activities with computational thinking.Technical SpecificationsRGB Cameras: Individual cameras recorded at 640×480 pixels, while context cameras captured at 1280×720 pixels.Frame Rate: 9-10 FPS depending on the setup.Smartwatch Sensors: Collected heart rate, accelerometer, gyroscope, rotation vector, and light sensor data at a frequency of 1–100 Hz.Data Organization and FormatsThe dataset follows a structured directory format:/groupX/experimentY/subjectZ.zip Each subject-specific folder contains:images/ (individual facial images)watch_sensors/ (sensor readings in JSON format)labels/ (engagement & emotion annotations)metadata/ (subject demographics & session details)Annotations and LabelingEach data entry includes engagement levels (1-5) and emotional states (9 categories) based on both self-reported labels and evaluations by four independent experts. A custom annotation tool was developed to ensure consistency across evaluations.Missing Data and Data QualitySynchronization: A centralized server ensured time alignment across devices. Brightness changes were used to verify synchronization.Completeness: No major missing data, except for occasional random frame drops due to embedded device performance.Data Consistency: Uniform collection methodology across sessions, ensuring high reliability.Data Processing MethodsTo enhance usability, the dataset includes preprocessed bounding boxes for face, body, and hands, along with gaze estimation and head pose annotations. These were generated using YOLO, MediaPipe, and DeepFace.File Formats and AccessibilityImages: Stored in standard JPEG format.Sensor Data: Provided as structured JSON files.Labels: Available as CSV files with timestamps.The dataset is publicly available under the CC-BY license and can be accessed along with the necessary processing scripts via the DIPSER GitHub repository.Potential Errors and LimitationsDue to camera angles, some student movements may be out of frame in collaborative sessions.Lighting conditions vary slightly across experiments.Sensor latency variations are minimal but exist due to embedded device constraints.CitationIf you find this project helpful for your research, please cite our work using the following bibtex entry:@misc{marquezcarpintero2025dipserdatasetinpersonstudent1, title={DIPSER: A Dataset for In-Person Student Engagement Recognition in the Wild}, author={Luis Marquez-Carpintero and Sergio Suescun-Ferrandiz and Carolina Lorenzo Álvarez and Jorge Fernandez-Herrero and Diego Viejo and Rosabel Roig-Vila and Miguel Cazorla}, year={2025}, eprint={2502.20209}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.20209}, } Usage and ReproducibilityResearchers can utilize standard tools like OpenCV, TensorFlow, and PyTorch for analysis. The dataset supports research in machine learning, affective computing, and education analytics, offering a unique resource for engagement and attention studies in real-world classroom environments.

  13. D

    CollegeEnrollment 2017 StateOfMichigan 20181106

    • detroitdata.org
    • portal.datadrivendetroit.org
    • +5more
    Updated Nov 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2018). CollegeEnrollment 2017 StateOfMichigan 20181106 [Dataset]. https://detroitdata.org/dataset/collegeenrollment-2017-stateofmichigan-20181106
    Explore at:
    csv, kml, geojson, arcgis geoservices rest api, zip, htmlAvailable download formats
    Dataset updated
    Nov 6, 2018
    Dataset provided by
    Data Driven Detroit
    Description

    This dataset contains college enrollment information for the state of Michigan. College enrollment was defined as the number of public high school students who graduated in 2017, who enrolled in a college or university. This dataset includes enrollment in two-year and four-year institutions of higher education.


    Click here for metadata (descriptions of the fields).

  14. c

    Student Enrollment by Special Education Status - Datasets - CTData.org

    • data.ctdata.org
    Updated Apr 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Student Enrollment by Special Education Status - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/student-enrollment-by-special-education-status
    Explore at:
    Dataset updated
    Apr 27, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explore all our datasets in raw format

  15. d

    Pittsburgh Public Schools Enrollment by Neighborhood, School, and Feeder...

    • datasets.ai
    • data.wprdc.org
    • +1more
    8
    Updated Aug 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County / City of Pittsburgh / Western PA Regional Data Center (2024). Pittsburgh Public Schools Enrollment by Neighborhood, School, and Feeder Pattern [Dataset]. https://datasets.ai/datasets/pittsburgh-public-schools-enrollment-by-neighborhood-school-and-feeder-pattern
    Explore at:
    8Available download formats
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    Allegheny County / City of Pittsburgh / Western PA Regional Data Center
    Area covered
    Pittsburgh School District
    Description

    This dataset includes enrollment data for Pittsburgh Public Schools. Data is presented by school, feeder pattern / attendance boundary, and by neighborhood. A table also includes data on the number of students attending schools by neighborhood. Data includes preschool students through 12th grade.

    This data can be very useful in understanding neighborhood-level enrollment patterns, student demographics by neighborhood and school, and can also be used to inform school-community partnerships.

    Students attending charter, private and parochial schools are not included in this data. Only students enrolled in a Pittsburgh Public School are captured.

    Totals with fewer than 11 students have been redacted to adhere to School District privacy policies.

    Data was extracted from the Pittsburgh Public Schools data system in January, 2021. It captures the school where the student was enrolled on October 1st. The neighborhood school the student feeds into based on their address as of the beginning of the 2020-21 school year.

  16. A

    ‘ Predicting Student Performance’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 2, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2015). ‘ Predicting Student Performance’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-predicting-student-performance-ec1b/b7296868/?iid=058-803&v=presentation
    Explore at:
    Dataset updated
    Mar 2, 2015
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘ Predicting Student Performance’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/student-performance on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    • This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In [Cortez and Silva, 2008], the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper source for more details).

    How to use this dataset

    • Predict Student's future performance
    • Understand the root causes for low performance
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit ewenme

    --- Original source retains full ownership of the source dataset ---

  17. College enrolment

    • open.canada.ca
    • data.ontario.ca
    xlsx
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). College enrolment [Dataset]. https://open.canada.ca/data/dataset/e9634682-b9dc-46a6-99b4-e17c86e00190
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Apr 1, 2012 - Dec 31, 2023
    Description

    Data from the Ministry of Colleges and Universities' College Enrolment Statistical Reporting system. Provides aggregated key enrolment data for college students, such as: * Fall term headcount enrolment by campus, credential pursued and level of study * Fall term headcount enrolment by program and Classification of Instructional Program * Fall term headcount enrolment by student status in Canada and country of citizenship by institution * Fall term headcount enrolment by student demographics (e.g., gender, age, first language) To protect privacy, numbers are suppressed in categories with less than 10 students. ## Related * College enrolments - 1996 to 2011 * University enrolment * Enrolment by grade in secondary schools * School enrolment by gender * Second language course enrolment * Course enrolment in secondary schools * Enrolment by grade in elementary schools

  18. o

    Total Student Enrollment in School Education by Province in 2074 BS -...

    • opendatanepal.com
    Updated May 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Total Student Enrollment in School Education by Province in 2074 BS - Dataset - Open Data Nepal [Dataset]. https://opendatanepal.com/dataset/total-student-enrollment-in-school-education-by-province-in-2074-bs
    Explore at:
    Dataset updated
    May 8, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Total Student Enrollment in School Education by Province in 2074 BS

  19. d

    Dataset with determinants or factors influencing graduate economics student...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Nov 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zurika Robinson; Thea Uys (2023). Dataset with determinants or factors influencing graduate economics student preparation and success in an online environment [Dataset]. http://doi.org/10.5061/dryad.bvq83bkgd
    Explore at:
    Dataset updated
    Nov 3, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    Zurika Robinson; Thea Uys
    Time period covered
    Jan 1, 2023
    Description

    The data relates to the paper that analyses the determinants or factors that best explain student research skills and success in the honours research report module during the COVID-19 pandemic in 2021. The data used have been gathered through an online survey created on the Qualtrics software package. The research questions were developed from demographic factors and subject knowledge including assignments to supervisor influence and other factors in terms of experience or belonging that played a role (see anonymous link at https://unisa.qualtrics.com/jfe/form/SV_86OZZOdyA5sBurY. An SMS was sent to all students of the 2021 module group to make them aware of the survey. They were under no obligation to complete it and all information was regarded as anonymous. We received 39 responses. The raw data from the survey was processed through the SPSS statistical, software package. The data file contains the demographics, frequencies, descriptives, and open questions processed.     The study...

  20. o

    Level-Wise Student Enrollment of Higher Education | Ministry of Education -...

    • opendatanepal.com
    Updated May 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Level-Wise Student Enrollment of Higher Education | Ministry of Education - Dataset - Open Data Nepal [Dataset]. https://opendatanepal.com/dataset/level-wise-student-enrollment-of-higher-education-ministry-of-education
    Explore at:
    Dataset updated
    May 8, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    It consist of Level-Wise Student Enrollment of Higher Education in 2074 BS

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2022). College Completion Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/boost-student-success-with-college-completion-da
Organization logo

Data from: College Completion Dataset

Graduation Rates, Race, Efficiency Measures and More

Related Article
Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 6, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
The Devastator
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

College Completion Dataset

Graduation Rates, Race, Efficiency Measures and More

By Jonathan Ortiz [source]

About this dataset

This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.

At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately

When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .

When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .

When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .

All this analysis gives an opportunity get a holistic overview about performance , potential deficits &

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.

In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.

Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!

When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...

Search
Clear search
Close search
Google apps
Main menu