Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 196 countries was 656013 sq. km. The highest value was in Russia: 16376870 sq. km and the lowest value was in Monaco: 2 sq. km. The indicator is available from 1961 to 2022. Below is a chart for all countries where data are available.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Country Life Acres, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/country-life-acres-mo-median-household-income-by-household-size.jpeg" alt="Country Life Acres, MO median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Life Acres median household income. You can refer the same here
Before the Second World War, the Soviet Union was the largest individual world power in terms of territory, at over 21 million square kilometers. When the territories of the United Kingdom it's colonies and dominions are combined, then the expanse of the British Empire totaled at almost 35 million square kilometers, making it larger than the USSR. The Axis Powers, led by Germany, Italy, and Japan, controlled a much smaller share of the globe than the Allied Powers in 1938 - however, the majority of Europe was under Axis control by 1941, while Japan had taken much of the Western territory in Asia and pushed further into China by this time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Argentina provincial data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kingabzpro/argentina-provincial-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
With almost 40 million inhabitants and a diverse geography that encompasses the Andes mountains, glacial lakes, and the Pampas grasslands, Argentina is the second largest country (by area) and has one of the largest economies in South America. It is politically organized as a federation of 23 provinces and an autonomous city, Buenos Aires.
We will analyze ten economic and social indicators collected for each province. Because these indicators are highly correlated, we will use principal component analysis (PCA) to reduce redundancies and highlight patterns that are not apparent in the raw data. After visualizing the patterns, we will use k-means clustering to partition the provinces into groups with similar development levels.
These results can be used to plan public policy by helping allocate resources to develop infrastructure, education, and welfare programs.
DataCamp
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Town And Country, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/town-and-country-mo-median-household-income-by-household-size.jpeg" alt="Town And Country, MO median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The European Business Performance database describes the performance of the largest enterprises in the twentieth century. It covers eight countries that together consistently account for above 80 per cent of western European GDP: Great Britain, Germany, France, Belgium, Italy, Spain, Sweden, and Finland. Data have been collected for five benchmark years, namely on the eve of WWI (1913), before the Great Depression (1927), at the extremes of the golden age (1954 and 1972), and in 2000.The database is comprised of two distinct datasets. The Small Sample (625 firms) includes the largest enterprises in each country across all industries (economy-wide). To avoid over-representation of certain countries and sectors, countries contribute a number of firms that is roughly proportionate to the size of the economy: 30 firms from Great Britain, 25 from Germany, 20 from France, 15 from Italy, 10 from Belgium, Spain, and Sweden, and 5 from Finland. By the same token, a cap has been set on the number of financial firms entering the sample, so that they range between up to 6 for Britain and 1 for Finland.The second dataset, or Large Sample (1,167 firms), is made up of the largest firms per industry. Here industries are so selected as to take into account long-term technological developments and the rise of entirely new products and services. Firms have been individually classified using the two-digit ISIC Rev. 3.1 codes, then grouped under a manageable number of industries. To some extent and broadly speaking, the two samples have a rather distinct focus: the Small Sample is biased in favour of sheer bigness, whereas the Large Sample emphasizes industries.As far as size and performance indicators are concerned, total assets has been picked as the main size measure in the first three benchmarks, turnover in 1972 and 2000 (financial intermediaries, though, are ranked by total assets throughout the database). Performance is gauged by means of two financial ratios, namely return on equity and shareholders’ return, i.e. the percentage year-on-year change in share price based on year-end values. In order to smooth out volatility, at each benchmark performance figures have been averaged over three consecutive years (for instance, performance in 1913 reflects average performance in 1911, 1912, and 1913).All figures were collected in national currency and converted to US dollars at current year-average exchange rates.
Blue Raster and the World Resources Institute (WRI) created the Aqueduct Country and River Basin Rankings map, which shows water stress scores for 180 nations, the world's 100 largest river basins by area, and the 100 most populous river basins. WRI found that "18 river basins face extremely high levels of baseline water stress, meaning that more than 80 percent of the water naturally available to agricultural, domestic, and industrial users is withdrawn annually—leaving businesses, farms, and communities vulnerable to scarcity."
As of March 2025, there were a reported 5,426 data centers in the United States, the most of any country worldwide. A further 529 were located in Germany, while 523 were located in the United Kingdom. What is a data center? A data center is a network of computing and storage resources that enables the delivery of shared software applications and data. These facilities can house large amounts of critical and important data, and therefore are vital to the daily functions of companies and consumers alike. As a result, whether it is a cloud, colocation, or managed service, data center real estate will have increasing importance worldwide. Hyperscale data centers In the past, data centers were highly controlled physical infrastructures, but the cloud has since changed that model. A cloud data service is a remote version of a data center – located somewhere away from a company's physical premises. Cloud IT infrastructure spending has grown and is forecast to rise further in the coming years. The evolution of technology, along with the rapid growth in demand for data across the globe, is largely driven by the leading hyperscale data center providers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
China's land cover data set includes 5 products: 1) glc2000_lucc_1km_China.asc, a Chinese subset of global land cover data based on SPOT4 remote sensing data developed by the GLC2000 project. The data name is GLC2000.GLC2000 China's regional land cover data is directly cropped from global cover data. For data description, please refer to http : //www-gvm.jrc.it/glc2000/defaultGLC2000.htm 2) igbp_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR remote sensing data supported by IGBP-DIS, the data name is IGBPDIS; IGBPDIS data was prepared using the USGS method, using April 1992 to March 1992 The AVHRR data developed global land cover data with a resolution of 1km. The classification system adopts a classification system developed by IGBP, which divides the world into 17 categories. Its development is based on continents. Applying AVHRR for 12 months to maximize synthetic NDVI data, 3) modis_lucc_1km_China_2001.asc, a subset of MODIS land cover data products in China, the data name is MODIS; MODIS China's regional land cover data is directly cropped from global cover data, and its data description please refer to http://edcdaac.usgs.gov/ modis / mod12q1v4.asp. 4. umd_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR data produced by the University of Maryland, the data name is UMd; the five bands of UMd based on AVHRR data and NDVI data are recombined to suggest a data matrix, using Methodology carried out global land cover classification. The goal is to create data that is more accurate than past data. The classification system largely adopts the classification scheme of IGBP. 5) westdc_lucc_1km_China.asc, China ’s 2000: 100,000 land cover data organized and implemented by the Chinese Academy of Sciences, combined with Yazashi conversion (the largest area method), and finally obtained a land use data product of 1km across the country, data name WESTDC. WESTDC China's regional land cover data is based on the results of a 1: 100,000 county-level land resource survey conducted by the Chinese Academy of Sciences. The land use data were merged and converted into a vector (the largest area method). The Chinese Academy of Sciences resource and environment classification system is adopted. 2: Data format: ArcView GIS ASCII 3: Mesh parameters: ncols 4857 nrows 4045 xllcorner -2650000 yllcorner 1876946 cellsize 1000 NODATA_value -9999 4: Projection parameters: Projection ALBERS Units METERS Spheroid Krasovsky Parameters: 25 00 0.000 / * 1st standard parallel 47 00 0.000 / * 2nd standard parallel 105 00 0.000 / * central meridian 0 0 0.000 / * latitude of projection's origin 0.00000 / * false easting (meters) 0.00000 / * false northing (meters)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Even though Canada is the second largest country in the world in terms of land area, it ranks 33rd in terms of population. Almost all of Canada’s population is concentrated in a narrow band along the country’s southern edge. Nearly 80% of the total population lives within the 25 major metropolitan areas, which represent only 0.79% of the total area of the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 11 countries was 671160 sq. km. The highest value was in India: 2973190 sq. km and the lowest value was in Singapore: 718 sq. km. The indicator is available from 1961 to 2022. Below is a chart for all countries where data are available.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Even though Canada is the second largest country in the world in terms of land area, it ranks 33rd in terms of population. Almost all of Canada’s population is concentrated in a narrow band along the country’s southern edge. Nearly 80% of the total population lives within the 25 major metropolitan areas, which represent only 0.79% of the total area of the country.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset 'Occurrence records of Dung Beetles (Coleoptera: Scarabaeidae: Scarabaeinae) from Sabah, Malaysia Borneo consists of two key components. At the core of the dataset is the 'Sampling-effort dataset,' comprising 3,787 unique sampling events. This dataset encompasses various types of data: (i) 2,319 trap-level records (61.2%), 44 site-level records (1.2%), 9 study-level records (0.2%), 847 taxonomic paper records (22.3%), and 568 depository data records (14.9%). Each data row corresponds to a unique sampling event, featuring key sampling details (e.g., samplingProtocol, eventRemarks, samplingEffort, eventDate), geographic information (i.e., latitude and longitude), and locality data. It is essential to note that these data types differ in resolution, with trap-level data offering the highest resolution, site- and study-level data amalgamating trap data, and taxonomic paper data representing individual occurrences. Consequently, careful handling of these various data types is imperative. The 'Sampling-effort dataset' is interconnected with an extension called the 'Occurrence dataset' through a shared unique identifier (eventID and/or parenteventID), present in both datasets. The 'Occurrence dataset' records the observed instances from each distinct sampling event, totaling over 27,000 occurrences. Each data row (occurrence) is anchored by a scientificName and includes essential information such as organismQuantity and additional taxonomic classifications. Each occurrence is traceable back to its corresponding sampling-effort details through a unique identifier (eventID and/or parenteventID). Sabah, Malaysia, the second-largest state in the country, encompasses 10% of Borneo, spanning an area of 73,371 km². It is bordered by the Sulu Sea to the Northeast, the Celebes Sea to the East, and the South China Sea to the West. Despite its significance, the understanding of the ecology, distributions, and taxonomy of Southeast Asian dung beetles remains limited. While dung beetles are commonly associated with feeding on dung, certain species exhibit varied dietary habits, including carrion and rotting fruits, with some never feed on dung. All dung beetles fall under the superfamily Scarabaeoidea, predominantly within the family Scarabaeidae. Notably, the subfamily Scarabaeinae is recognized as the primary group of true dung beetles, with a substantial portion exclusively subsisting on dung. This dataset contributes to the BIFA GBIF project 'Mobilising data on ecologically important insects in Malaysia and Singapore.' Specifically focused on Sabah, it functions as a comprehensive documentation of all unique sampling events that have taken place, accompanied by its associated occurrences. Regular updates will be implemented to incorporate new findings from ongoing and future studies, ensuring the dataset remains a dynamic and valuable resource in the research and monitoring of dung beetles in the region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Hill Country Village, TX, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hill Country Village median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present the GLOBAL ROADKILL DATA, the largest worldwide compilation of roadkill data on terrestrial vertebrates. We outline the workflow (Fig. 1) to illustrate the sequential steps of the study, in which we merged local-scale survey datasets and opportunistic records into a unified roadkill large dataset comprising 208,570 roadkill records. These records include 2283 species and subspecies from 54 countries across six continents, ranging from 1971 to 2024.Large roadkill datasets offer the advantage ofpreventing the collection of redundant data and are valuable resources for both local and macro-scale analyses regarding roadkill rates, road and landscape features associated with roadkill risk, species more vulnerable to road traffic, and populations at risk due to additional mortality. The standardization of data - such as scientific names, projection coordinates, and units - in a user-friendly format, makes themreadily accessible to a broader scientific and non-scientific community, including NGOs, consultants, public administration officials, and road managers. The open-access approach promotes collaboration among researchers and road practitioners, facilitating the replication of studies, validation of findings, and expansion of previous work. Moreover, researchers can utilize suchdatasets to develop new hypotheses, conduct meta-analyses, address pressing challenges more efficiently and strengthen the robustness of road ecology research. Ensuring widespreadaccess to roadkill data fosters a more diverse and inclusive research community. This not only grants researchers in emerging economies with more data for analysis, but also cultivates a diverse array of perspectives and insightspromoting the advance of infrastructure ecology.MethodsInformation sources: A core team from different continents performed a systematic literature search in Web of Science and Google Scholar for published peer-reviewed papers and dissertations. It was searched for the following terms: “roadkill* OR “road-kill” OR “road mortality” AND (country) in English, Portuguese, Spanish, French and/or Mandarin. This initiative was also disseminated to the mailing lists associated with transport infrastructure: The CCSG Transport Working Group (WTG), Infrastructure & Ecology Network Europe (IENE) and Latin American & Caribbean Transport Working Group (LACTWG) (Fig. 1). The core team identified 750 scientific papers and dissertations with information on roadkill and contacted the first authors of the publications to request georeferenced locations of roadkill andofferco-authorship to this data paper. Of the 824 authors contacted, 145agreed to sharegeoreferenced roadkill locations, often involving additional colleagues who contributed to data collection. Since our main goal was to provide open access to data that had never been shared in this format before, data from citizen science projects (e.g., globalroakill.net) that are already available were not included.Data compilation: A total of 423 co-authors compiled the following information: continent, country, latitude and longitude in WGS 84 decimal degrees of the roadkill, coordinates uncertainty, class, order, family, scientific name of the roadkill, vernacular name, IUCN status, number of roadkill, year, month, and day of the record, identification of the road, type of road, survey type, references, and observers that recorded the roadkill (Supplementary Information Table S1 - description of the fields and Table S2 - reference list). When roadkill data were derived from systematic surveys, the dataset included additional information on road length that was surveyed, latitude and longitude of the road (initial and final part of the road segment), survey period, start year of the survey, final year of the survey, 1st month of the year surveyed, last month of the year surveyed, and frequency of the survey. We consolidated 142 valid datasets into a single dataset. We complemented this data with OccurenceID (a UUID generated using Java code), basisOfRecord, countryCode, locality using OpenStreetMap’s API (https://www.openstreetmap.org), geodeticDatum, verbatimScientificName, Kingdom, phylum, genus, specificEpithet, infraspecificEpithet, acceptedNameUsage, scientific name authorship, matchType, taxonRank using Darwin Core Reference Guide (https://dwc.tdwg.org/terms/#dwc:coordinateUncertaintyInMeters) and link of the associatedReference (URL).Data standardization - We conducted a clustering analysis on all text fields to identify similar entries with minor variations, such as typos, and corrected them using OpenRefine (http://openrefine.org). Wealsostandardized all date values using OpenRefine. Coordinate uncertainties listed as 0 m were adjusted to either 30m or 100m, depending on whether they were recorded after or before 2000, respectively, following the recommendation in the Darwin Core Reference Guide (https://dwc.tdwg.org/terms/#dwc:coordinateUncertaintyInMeters).Taxonomy - We cross-referenced all species names with the Global Biodiversity Information Facility (GBIF) Backbone Taxonomy using Java and GBIF’s API (https://doi.org/10.15468/39omei). This process aimed to rectify classification errors, include additional fields such as Kingdom, Phylum, and scientific authorship, and gather comprehensive taxonomic information to address any gap withinthe datasets. For species not automatically matched (matchType - Table S1), we manually searched for correct synonyms when available.Species conservation status - Using the species names, we retrieved their conservation status and also vernacular names by cross-referencing with the database downloaded from the IUCNRed List of Threatened Species (https://www.iucnredlist.org). Species without a match were categorized as "Not Evaluated".Data RecordsGLOBAL ROADKILL DATA is available at Figshare27 https://doi.org/10.6084/m9.figshare.25714233. The dataset incorporates opportunistic (collected incidentally without data collection efforts) and systematic data (collected through planned, structured, and controlled methods designed to ensure consistency and reliability). In total, it comprises 208,570 roadkill records across 177,428 different locations(Fig. 2). Data were collected from the road network of 54 countries from 6 continents: Europe (n = 19), Asia (n = 16), South America (n=7), North America (n = 4), Africa (n = 6) and Oceania (n = 2).(Figure 2 goes here)All data are georeferenced in WGS84 decimals with maximum uncertainty of 5000 m. Approximately 92% of records have a location uncertainty of 30 m or less, with only 1138 records having location uncertainties ranging from 1000 to 5000 m. Mammals have the highest number of roadkill records (61%), followed by amphibians (21%), reptiles (10%) and birds (8%). The species with the highest number of records were roe deer (Capreolus capreolus, n = 44,268), pool frog (Pelophylax lessonae, n = 11,999) and European fallow deer (Dama dama, n = 7,426).We collected information on 126 threatened species with a total of 4570 records. Among the threatened species, the giant anteater (Myrmecophaga tridactyla, VULNERABLE) has the highest number of records n = 1199), followed by the common fire salamander (Salamandra salamandra, VULNERABLE, n=1043), and European rabbit (Oryctolagus cuniculus, ENDANGERED, n = 440). Records ranged from 1971 and 2024, comprising 72% of the roadkill recorded since 2013. Over 46% of the records were obtained from systematic surveys, with road length and survey period averaging, respectively, 66 km (min-max: 0.09-855 km) and 780 days (1-25,720 days).Technical ValidationWe employed the OpenStreetMap API through Java todetect location inaccuracies, andvalidate whether the geographic coordinates aligned with the specified country. We calculated the distance of each occurrence to the nearest road using the GRIP global roads database28, ensuring that all records were within the defined coordinate uncertainty. We verified if the survey duration matched the provided initial and final survey dates. We calculated the distance between the provided initial and final road coordinates and cross-checked it with the given road length. We identified and merged duplicate entries within the same dataset (same location, species, and date), aggregating the number of roadkills for each occurrence.Usage NotesThe GLOBAL ROADKILL DATA is a compilation of roadkill records and was designed to serve as a valuable resource for a wide range of analyses. Nevertheless, to prevent the generation of meaningless results, users should be aware of the followinglimitations:- Geographic representation – There is an evident bias in the distribution of records. Data originatedpredominantly from Europe (60% of records), South America (22%), and North America (12%). Conversely, there is a notable lack of records from Asia (5%), Oceania (1%) and Africa (0.3%). This dataset represents 36% of the initial contacts that provided geo-referenced records, which may not necessarily correspond to locations where high-impact roads are present.- Location accuracy - Insufficient location accuracy was observed for 1% of the data (ranging from 1000 to 5000 m), that was associated with various factors, such as survey methods, recording practices, or timing of the survey.- Sampling effort - This dataset comprised both opportunistic data and records from systematic surveys, with a high variability in survey duration and frequency. As a result, the use of both opportunistic and systematic surveys may affect the relative abundance of roadkill making it hard to make sound comparisons among species or areas.- Detectability and carcass removal bias - Although several studies had a high frequency of road surveys,the duration of carcass persistence on roads may vary with species size and environmental conditions, affecting detectability. Accordingly, several approaches account for survey frequency and target speciesto estimate more
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 196 countries was 656013 sq. km. The highest value was in Russia: 16376870 sq. km and the lowest value was in Monaco: 2 sq. km. The indicator is available from 1961 to 2022. Below is a chart for all countries where data are available.