81 datasets found
  1. U.S. Facebook users 2025, by age and gender

    • statista.com
    • ai-chatbox.pro
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. Facebook users 2025, by age and gender [Dataset]. https://www.statista.com/statistics/187041/us-user-age-distribution-on-facebook/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2025
    Area covered
    United States
    Description

    As of January 2025, users aged 25 to 34 years made up Facebook's largest audience in the United States, accounting for **** percent of the social network's user base, with **** percent of those users being women. Overall, *** percent of users aged 35 to 44 years were women, and *** percent were men. How many people use Facebook in the United States? ******** is by far the most used social network in the world and finds a huge share of its audience in ****************** Facebook’s U.S. audience size comes second only to India. In 2023, there were over *** million Facebook users in the U.S. By 2028, it is estimated that around *** million people in the U.S. will be signed up for the platform. How do users in the United States view the platform? Although Facebook is widely used and very popular with U.S. consumers, there are issues of trust with its North American audience. As of November 2021, ** percent of respondents reported that they did not trust Facebook with their personal data. Despite having privacy doubts, a May 2022 survey found that ** percent of adults had a very favorable opinion of Facebook, and one-third held a somewhat positive view of the platform.

  2. U.S. Facebook users 2025, by age group

    • statista.com
    • ai-chatbox.pro
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. Facebook users 2025, by age group [Dataset]. https://www.statista.com/statistics/187549/facebook-distribution-of-users-age-group-usa/
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2025
    Area covered
    United States
    Description

    As of January 2025, 24.2 percent of Facebook users in the United States were aged between 25 and 34 years, making up Facebook’s largest audience in the country. Overall, 19 percent of users belonged to the 18 to 24-year age group. Does everyone in the U.S. use Facebook? In 2023, there were approximately 247 million Facebook users in the U.S., a figure which is projected to steadily increase, and reach 262.8 million by 2028. Social media users in the United States have a very high awareness of the social media giant. Expectedly, 94 percent of users had heard of the brand in 2023. Although the vast majority of U.S. social networkers knew of Facebook, the likeability of the platform was not so impressive at 68 percent. Nonetheless, usage, loyalty, and buzz around the brand remained relatively high. Facebook, Meta, and the metaverse A strategic rebranding from Facebook to Meta Platforms in late 2021 boded well for the company in Mark Zuckerberg’s attempt to be strongly linked to the metaverse, and to be considered more than just a social media company. According to a survey conducted in the U.S. in early 2022, Meta Platforms is the brand that Americans most associated with the metaverse.  

  3. Average Number of Fake News Stories Shared on Facebook, by Age Group

    • evidencehub.net
    json
    Updated Feb 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guess, Andrew, Jonathan Nagler, Joshua Tucker. Less Than You Think: Prevalence and Predictions of Fake News Dissemination on Facebook (New York: American Association for the Advancement of Science, 2019) (2022). Average Number of Fake News Stories Shared on Facebook, by Age Group [Dataset]. https://evidencehub.net/chart/average-number-of-fake-news-stories-shared-on-facebook-by-age-group-74.0
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Feb 11, 2022
    Dataset provided by
    The Lisbon Council
    Authors
    Guess, Andrew, Jonathan Nagler, Joshua Tucker. Less Than You Think: Prevalence and Predictions of Fake News Dissemination on Facebook (New York: American Association for the Advancement of Science, 2019)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Measurement technique
    Survey (N=5000)
    Description

    The chart shows that Americans over 65 were more likely to share fake news to their Facebook friends, regardless of their education, ideology, and partisanship. The oldest age group was likely to share nearly seven times as many articles from fake news domains on Facebook as those in the youngest age group, or about 2.3 times as many as those in the next-oldest age group. The data regarding the age group 18-29 and 30-44 are not displayed in the source, therefore the value of data in this chart are approximate, determined with pixel count.

  4. s

    Data from: Facebook Users

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Facebook Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Facebook is fast approaching 3 billion monthly active users. That’s about 36% of the world’s entire population that log in and use Facebook at least once a month.

  5. Facebook: distribution of global audiences 2025, by age and gender

    • statista.com
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Facebook: distribution of global audiences 2025, by age and gender [Dataset]. https://www.statista.com/statistics/376128/facebook-global-user-age-distribution/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide
    Description

    As of February 2025, it was found that men between the ages of 25 and 34 years made up Facebook's largest audience, accounting for 18.5 percent of global users. Additionally, Facebook's second-largest audience base could be found with men aged 18 to 24 years. Facebook connects the world Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger, as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.

  6. Facebook advertising data of the Sumar party and its leader Yolanda Díaz: 9...

    • figshare.com
    xlsx
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Celia Ramos Vera (2023). Facebook advertising data of the Sumar party and its leader Yolanda Díaz: 9 January - 21 July 2023 [Dataset]. http://doi.org/10.6084/m9.figshare.24793626.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 12, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Celia Ramos Vera
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains detailed Facebook advertising data for the political party Sumar and its leader Yolanda Díaz for the period from 9 January to 21 July 2023. This timeframe includes the campaign and pre-campaign periods of the 2023 Spanish general election. The dataset provides a comprehensive overview of the party's advertising strategies on Facebook, including unique ad IDs from Facebook's ad library, average cost per ad, dates, ad text, links, ad categories and estimated reach segmented by age, gender and geography. The dataset also includes information on the languages used in the ads, providing insights into the party's targeting and communication approaches during this crucial election period.

  7. Facebook Spam Dataset

    • kaggle.com
    Updated Apr 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khaja Hussain SK (2021). Facebook Spam Dataset [Dataset]. https://www.kaggle.com/khajahussainsk/facebook-spam-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 11, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Khaja Hussain SK
    Description

    Context Collection of Facebook spam-legit profile and content-based data. It can be used for classification tasks.

    Content The dataset can be used for building machine learning models. To collect the dataset, Facebook API and Facebook Graph API are used and the data is collected from public profiles. There are 500 legit profiles and 100 spam profiles. The list of features is as follows with Label (0-legit, 1-spam). 1. Number of friends 2. Number of followings 3. Number of Community 4. The age of the user account (in days) 5. Total number of posts shared 6. Total number of URLs shared 7. Total number of photos/videos shared 8. Fraction of the posts containing URLs 9. Fraction of the posts containing photos/videos 10. Average number of comments per post 11. Average number of likes per post 12. Average number of tags in a post (Rate of tagging) 13. Average number of hashtags present in a post

    Inspiration Dataset helps the community to understand how features can help to differ Facebook legit users from spam users.

  8. Facebook: distribution of global audiences 2024, by age and gender

    • statista.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Facebook: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.

                  Facebook connects the world
    
                  Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
                  as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
    
  9. H

    Data from "An exploration of the Facebook social networks of smokers and...

    • dataverse.harvard.edu
    tsv
    Updated Jul 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2018). Data from "An exploration of the Facebook social networks of smokers and non-smokers" [Dataset]. http://doi.org/10.7910/DVN/XMPAUQ
    Explore at:
    tsv(489758), tsv(622534), tsv(1482561), tsv(172941)Available download formats
    Dataset updated
    Jul 16, 2018
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Purpose For the purpose of informing tobacco intervention programs, this dataset was created and used to explore how online social networks of smokers differed from those of nonsmokers. The study was a secondary analysis of data collected as part of a randomized control trial conducted within Facebook. (See "Other References" in "Metadata" for parent study information.) Basic description of 4 anonymized data files of study participants. fbr_friends: Anonymized Facebook friends networks, basic ego demographics, basic ego social media activity fbr_family: Anonymized Facebook family networks, basic ego demographics, basic ego social media activity fbr_photos: Anonymized Facebook photo networks, basic ego demographics, basic ego social media activity fbr_groups: Anonymized Facebook group networks, basic ego demographics, basic ego social media activity Each network comprises the ego, the ego's first degree connections, and the (second degree) connections between the ego's friends. Missing data and users who did not have friend, family, photo, or group networks were cleaned from the data beforehand. Each data file contains the following columns of data, taken with participant knowledge and consent participant_id: Nonidentifying ids assigned to different study participants. is_smoker: Binary value (0,1) that takes on the value 1 if participant was a smoker and 0 otherwise. gender: One of three categories: male, female, or blank, which signified Other (different from missing data). country: One of four categories: Canada (ca), US (us), Mexico (mx), or Other (xx). likes_count: Numeric data indicating number of Facebook likes the participant had made up to the date the data was collected. wall_count: Numeric data indicating number of Facebook wall posts the participant had made up to the date the data was collected. t_count_page_views: Numeric data indicating number of pages participant had visited in the UbiQUITous app up to the date the data was collected. yearsOld: Numeric data indicating age in years of the participant; right censored at 90 years for data anonymity. vertices: Number of people in the participant's network. edges: Number of connections between people in the network. density: The portion of potential connections in a network that are actual connections; a network-level metric; calculated after removing ego and isolates. mean_betweenness_centrality: An average of the relative importance of all individuals within their own network; a network-level metric; calculated after removing ego and isolates. transitivity: The extent to which the relationship between two nodes in a network that are connected by an edge is transitive (calculated as the number of triads divided by all possible connections); a network-level metric; calculated after removing ego and isolates. mean_closeness: Average of how closely associated members are to one another; a network-level metric; calculated after removing ego and isolates. isolates2: Number of individuals with no connections other than to the ego; a network-level metric. diameter3: Maximum degree of separation between any two individuals in the network; a network-level metric; calculated after removing ego and isolates. clusters3: Number of subnetworks; a network-level metric; calculated after removing ego and isolates. communities3: Number of groups, sorted to increase dense connections within the group and decrease sparse connections outside it (i.e., to maximize modularity); a network-level metric; calculated after removing ego and isolates. modularity3: The strength of division of a network into communities (calculated as the fraction of ties between community members in excess of the expected number of ties within communities if ties were random); a network-level metric. Detailed information on network metrics in the associated manuscript: "An exploration of the Facebook social networks of smokers and non-smokers" by Fu, L, Jacobs MA, Brookover J, Valente TW, Cobb NK, and Graham AL.

  10. s

    Data from: Twitter Users

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average Twitter user spends 5.1 hours per month on the platform.

  11. d

    Replication Data for: The Geography of Facebook Groups in the United States

    • search.dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Herdagdelen, Amac; Adamic, Lada; State, Bogdan (2023). Replication Data for: The Geography of Facebook Groups in the United States [Dataset]. http://doi.org/10.7910/DVN/OYQVEP
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Herdagdelen, Amac; Adamic, Lada; State, Bogdan
    Area covered
    United States
    Description

    Data shared as part of the publication. It contains county-level aggregate metrics for prevalence of participation in different types of groups, average diversity metrics for locale, gender, and age composition of members in the groups, and admin controls on groups,

  12. Facebook users share Philippines 2024, by age

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Facebook users share Philippines 2024, by age [Dataset]. https://www.statista.com/statistics/1139972/share-of-facebook-users-by-age-philippines/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Philippines
    Description

    According to the data from NapoleonCat, the highest share of Facebook users in the Philippines were between the age of 18 and 24, followed by those aged 25 to 34 years as of December 2024. Facebook is the leading social media platform in the country, with a market share of over ** percent.

  13. b

    Facebook Revenue and Usage Statistics (2025)

    • businessofapps.com
    Updated Aug 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2017). Facebook Revenue and Usage Statistics (2025) [Dataset]. https://www.businessofapps.com/data/facebook-statistics/
    Explore at:
    Dataset updated
    Aug 8, 2017
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Facebook probably needs no introduction; nonetheless, here is a quick history of the company. The world’s biggest and most-famous social network was launched by Mark Zuckerberg while he was a...

  14. Google Analytics & Twitter dataset from a movies, TV series and videogames...

    • figshare.com
    • portalcientificovalencia.univeuropea.com
    txt
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Víctor Yeste (2024). Google Analytics & Twitter dataset from a movies, TV series and videogames website [Dataset]. http://doi.org/10.6084/m9.figshare.16553061.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Víctor Yeste
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio

  15. South Korea: number of Facebook users 2017-2029

    • ai-chatbox.pro
    • statista.com
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nina Jobst (2025). South Korea: number of Facebook users 2017-2029 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F5274%2Fsocial-media-usage-in-south-korea%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Nina Jobst
    Area covered
    South Korea
    Description

    In 2024, around 24.65 million people used Facebook in South Korea. The number of Facebook users is expected to increase to around 25.47 million users in 2029, according to the forecast. Facebook is among the five leading social media services in South Korea, with more than half of the population using it. Who uses Facebook in South Korea? According to data collected on the age and gender distribution of Facebook users, 16.5 percent of all South Korean Facebook users were women between 25 and 34 years old. With male users that age making up another 15.3 percent of users, this age group had the overall highest Facebook user share. The same was also true for Facebook Messenger. However, while men of that age group had the highest user share of Facebook Messenger, many female users were 18 to 24 years old. Social media usage behavior Socializing with others was the most common reason for using social networks among South Koreans, followed by checking out posts or content created by others. According to a survey conducted in 2020, the weekly average usage time of social media amounted to 65.8 minutes, while more than 18 percent spent over two hours per week on social media. Many people, especially teenagers, use social media mostly via smartphone. This has possibly contributed to the growing risk of smartphone overdependence in South Korea.

  16. f

    Effect of Media Usage Selection on Social Mobilization Speed: Facebook vs...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jing Wang; Stuart Madnick; Xitong Li; Jeff Alstott; Chander Velu (2023). Effect of Media Usage Selection on Social Mobilization Speed: Facebook vs E-Mail [Dataset]. http://doi.org/10.1371/journal.pone.0134811
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jing Wang; Stuart Madnick; Xitong Li; Jeff Alstott; Chander Velu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Social mobilization is a process that enlists a large number of people to achieve a goal within a limited time, especially through the use of social media. There is increasing interest in understanding the factors that affect the speed of social mobilization. Based on the Langley Knights competition data set, we analyzed the differences in mobilization speed between users of Facebook and e-mail. We include other factors that may influence mobilization speed (gender, age, timing, and homophily of information source) in our model as control variables in order to isolate the effect of such factors. We show that, in this experiment, although more people used e-mail to recruit, the mobilization speed of Facebook users was faster than that of those that used e-mail. We were also able to measure and show that the mobilization speed for Facebook users was on average seven times faster compared to e-mail before controlling for other factors. After controlling for other factors, we show that Facebook users were 1.84 times more likely to register compared to e-mail users in the next period if they have not done so at any point in time. This finding could provide useful insights for future social mobilization efforts.

  17. s

    Social Media Usage By Age

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Usage By Age [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Gen Z and Millennials are the biggest social media users of all age groups.

  18. CMFeed: A Benchmark Dataset for Controllable Multimodal Feedback Synthesis

    • zenodo.org
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Puneet Kumar; Puneet Kumar; Sarthak Malik; Sarthak Malik; Balasubramanian Raman; Balasubramanian Raman; Xiaobai Li; Xiaobai Li (2025). CMFeed: A Benchmark Dataset for Controllable Multimodal Feedback Synthesis [Dataset]. http://doi.org/10.5281/zenodo.11409612
    Explore at:
    Dataset updated
    May 11, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Puneet Kumar; Puneet Kumar; Sarthak Malik; Sarthak Malik; Balasubramanian Raman; Balasubramanian Raman; Xiaobai Li; Xiaobai Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2024
    Description

    Overview
    The Controllable Multimodal Feedback Synthesis (CMFeed) Dataset is designed to enable the generation of sentiment-controlled feedback from multimodal inputs, including text and images. This dataset can be used to train feedback synthesis models in both uncontrolled and sentiment-controlled manners. Serving a crucial role in advancing research, the CMFeed dataset supports the development of human-like feedback synthesis, a novel task defined by the dataset's authors. Additionally, the corresponding feedback synthesis models and benchmark results are presented in the associated code and research publication.

    Task Uniqueness: The task of controllable multimodal feedback synthesis is unique, distinct from LLMs and tasks like VisDial, and not addressed by multi-modal LLMs. LLMs often exhibit errors and hallucinations, as evidenced by their auto-regressive and black-box nature, which can obscure the influence of different modalities on the generated responses [Ref1; Ref2]. Our approach includes an interpretability mechanism, as detailed in the supplementary material of the corresponding research publication, demonstrating how metadata and multimodal features shape responses and learn sentiments. This controllability and interpretability aim to inspire new methodologies in related fields.

    Data Collection and Annotation
    Data was collected by crawling Facebook posts from major news outlets, adhering to ethical and legal standards. The comments were annotated using four sentiment analysis models: FLAIR, SentimentR, RoBERTa, and DistilBERT. Facebook was chosen for dataset construction because of the following factors:
    • Facebook was chosen for data collection because it uniquely provides metadata such as news article link, post shares, post reaction, comment like, comment rank, comment reaction rank, and relevance scores, not available on other platforms.
    • Facebook is the most used social media platform, with 3.07 billion monthly users, compared to 550 million Twitter and 500 million Reddit users. [Ref]
    • Facebook is popular across all age groups (18-29, 30-49, 50-64, 65+), with at least 58% usage, compared to 6% for Twitter and 3% for Reddit. [Ref]. Trends are similar for gender, race, ethnicity, income, education, community, and political affiliation [Ref]
    • The male-to-female user ratio on Facebook is 56.3% to 43.7%; on Twitter, it's 66.72% to 23.28%; Reddit does not report this data. [Ref]

    Filtering Process: To ensure high-quality and reliable data, the dataset underwent two levels of filtering:
    a) Model Agreement Filtering: Retained only comments where at least three out of the four models agreed on the sentiment.
    b) Probability Range Safety Margin: Comments with a sentiment probability between 0.49 and 0.51, indicating low confidence in sentiment classification, were excluded.
    After filtering, 4,512 samples were marked as XX. Though these samples have been released for the reader's understanding, they were not used in training the feedback synthesis model proposed in the corresponding research paper.

    Dataset Description
    • Total Samples: 61,734
    • Total Samples Annotated: 57,222 after filtering.
    • Total Posts: 3,646
    • Average Likes per Post: 65.1
    • Average Likes per Comment: 10.5
    • Average Length of News Text: 655 words
    • Average Number of Images per Post: 3.7

    Components of the Dataset
    The dataset comprises two main components:
    CMFeed.csv File: Contains metadata, comment, and reaction details related to each post.
    Images Folder: Contains folders with images corresponding to each post.

    Data Format and Fields of the CSV File
    The dataset is structured in CMFeed.csv file along with corresponding images in related folders. This CSV file includes the following fields:
    Id: Unique identifier
    Post: The heading of the news article.
    News_text: The text of the news article.
    News_link: URL link to the original news article.
    News_Images: A path to the folder containing images related to the post.
    Post_shares: Number of times the post has been shared.
    Post_reaction: A JSON object capturing reactions (like, love, etc.) to the post and their counts.
    Comment: Text of the user comment.
    Comment_like: Number of likes on the comment.
    Comment_reaction_rank: A JSON object detailing the type and count of reactions the comment received.
    Comment_link: URL link to the original comment on Facebook.
    Comment_rank: Rank of the comment based on engagement and relevance.
    Score: Sentiment score computed based on the consensus of sentiment analysis models.
    Agreement: Indicates the consensus level among the sentiment models, ranging from -4 (all negative) to 4 (all positive). 3 negative and 1 positive will result into -2 and 3 positives and 1 negative will result into +2.
    Sentiment_class: Categorizes the sentiment of the comment into 1 (positive) or 0 (negative).

    More Considerations During Dataset Construction
    We thoroughly considered issues such as the choice of social media platform for data collection, bias and generalizability of the data, selection of news handles/websites, ethical protocols, privacy and potential misuse before beginning data collection. While achieving completely unbiased and fair data is unattainable, we endeavored to minimize biases and ensure as much generalizability as possible. Building on these considerations, we made the following decisions about data sources and handling to ensure the integrity and utility of the dataset:

    • Why not merge data from different social media platforms?
    We chose not to merge data from platforms such as Reddit and Twitter with Facebook due to the lack of comprehensive metadata, clear ethical guidelines, and control mechanisms—such as who can comment and whether users' anonymity is maintained—on these platforms other than Facebook. These factors are critical for our analysis. Our focus on Facebook alone was crucial to ensure consistency in data quality and format.

    • Choice of four news handles: We selected four news handles—BBC News, Sky News, Fox News, and NY Daily News—to ensure diversity and comprehensive regional coverage. These news outlets were chosen for their distinct regional focuses and editorial perspectives: BBC News is known for its global coverage with a centrist view, Sky News offers geographically targeted and politically varied content learning center/right in the UK/EU/US, Fox News is recognized for its right-leaning content in the US, and NY Daily News provides left-leaning coverage in New York. Many other news handles such as NDTV, The Hindu, Xinhua, and SCMP are also large-scale but may contain information in regional languages such as Indian and Chinese, hence, they have not been selected. This selection ensures a broad spectrum of political discourse and audience engagement.

    • Dataset Generalizability and Bias: With 3.07 billion of the total 5 billion social media users, the extensive user base of Facebook, reflective of broader social media engagement patterns, ensures that the insights gained are applicable across various platforms, reducing bias and strengthening the generalizability of our findings. Additionally, the geographic and political diversity of these news sources, ranging from local (NY Daily News) to international (BBC News), and spanning political spectra from left (NY Daily News) to right (Fox News), ensures a balanced representation of global and political viewpoints in our dataset. This approach not only mitigates regional and ideological biases but also enriches the dataset with a wide array of perspectives, further solidifying the robustness and applicability of our research.

    • Dataset size and diversity: Facebook prohibits the automatic scraping of its users' personal data. In compliance with this policy, we manually scraped publicly available data. This labor-intensive process requiring around 800 hours of manual effort, limited our data volume but allowed for precise selection. We followed ethical protocols for scraping Facebook data , selecting 1000 posts from each of the four news handles to enhance diversity and reduce bias. Initially, 4000 posts were collected; after preprocessing (detailed in Section 3.1), 3646 posts remained. We then processed all associated comments, resulting in a total of 61734 comments. This manual method ensures adherence to Facebook’s policies and the integrity of our dataset.

    Ethical considerations, data privacy and misuse prevention
    The data collection adheres to Facebook’s ethical guidelines [<a href="https://developers.facebook.com/terms/"

  19. UK children daily time on selected social media apps 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). UK children daily time on selected social media apps 2024 [Dataset]. https://www.statista.com/statistics/1124962/time-spent-by-children-on-social-media-uk/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United Kingdom
    Description

    In 2024, children in the United Kingdom spent an average of *** minutes per day on TikTok. This was followed by Instagram, as children in the UK reported using the app for an average of ** minutes daily. Children in the UK aged between four and 18 years also used Facebook for ** minutes a day on average in the measured period. Mobile ownership and usage among UK children In 2021, around ** percent of kids aged between eight and 11 years in the UK owned a smartphone, while children aged between five and seven having access to their own device were approximately ** percent. Mobile phones were also the second most popular devices used to access the web by children aged between eight and 11 years, as tablet computers were still the most popular option for users aged between three and 11 years. Children were not immune to the popularity acquired by short video format content in 2020 and 2021, spending an average of ** minutes per day engaging with TikTok, as well as over ** minutes on the YouTube app in 2021. Children data protection In 2021, ** percent of U.S. parents and ** percent of UK parents reported being slightly concerned with their children’s device usage habits. While the share of parents reporting to be very or extremely concerned was considerably smaller, children are considered among the most vulnerable digital audiences and need additional attention when it comes to data and privacy protection. According to a study conducted during the first quarter of 2022, ** percent of children’s apps hosted in the Google Play Store and ** percent of apps hosted in the Apple App Store transmitted users’ locations to advertisers. Additionally, ** percent of kids’ apps were found to collect persistent identifiers, such as users’ IP addresses, which could potentially lead to Children’s Online Privacy Protection Act (COPPA) violations in the United States. In the United Kingdom, companies have to take into account several obligations when considering online environments for children, including an age-appropriate design and avoiding sharing children’s data.

  20. M

    Malaysia Exp Per Household: 35 to 44yrs: MA: FB: Rice

    • ceicdata.com
    Updated Jun 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Malaysia Exp Per Household: 35 to 44yrs: MA: FB: Rice [Dataset]. https://www.ceicdata.com/en/malaysia/household-expenditure-survey-by-age-group
    Explore at:
    Dataset updated
    Jun 30, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2005 - May 1, 2016
    Area covered
    Malaysia
    Variables measured
    Household Income and Expenditure Survey
    Description

    Exp Per Household: 35 to 44yrs: MA: FB: Rice data was reported at 45.000 MYR in 2016. This records an increase from the previous number of 41.000 MYR for 2014. Exp Per Household: 35 to 44yrs: MA: FB: Rice data is updated yearly, averaging 41.500 MYR from May 2005 (Median) to 2016, with 4 observations. The data reached an all-time high of 45.000 MYR in 2016 and a record low of 37.000 MYR in 2005. Exp Per Household: 35 to 44yrs: MA: FB: Rice data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Malaysia – Table MY.H042: Household Expenditure Survey: by Age Group.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). U.S. Facebook users 2025, by age and gender [Dataset]. https://www.statista.com/statistics/187041/us-user-age-distribution-on-facebook/
Organization logo

U.S. Facebook users 2025, by age and gender

Explore at:
36 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 26, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2025
Area covered
United States
Description

As of January 2025, users aged 25 to 34 years made up Facebook's largest audience in the United States, accounting for **** percent of the social network's user base, with **** percent of those users being women. Overall, *** percent of users aged 35 to 44 years were women, and *** percent were men. How many people use Facebook in the United States? ******** is by far the most used social network in the world and finds a huge share of its audience in ****************** Facebook’s U.S. audience size comes second only to India. In 2023, there were over *** million Facebook users in the U.S. By 2028, it is estimated that around *** million people in the U.S. will be signed up for the platform. How do users in the United States view the platform? Although Facebook is widely used and very popular with U.S. consumers, there are issues of trust with its North American audience. As of November 2021, ** percent of respondents reported that they did not trust Facebook with their personal data. Despite having privacy doubts, a May 2022 survey found that ** percent of adults had a very favorable opinion of Facebook, and one-third held a somewhat positive view of the platform.

Search
Clear search
Close search
Google apps
Main menu