100+ datasets found
  1. 🏡 Global Housing Market Analysis (2015-2024)

    • kaggle.com
    zip
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atharva Soundankar (2025). 🏡 Global Housing Market Analysis (2015-2024) [Dataset]. https://www.kaggle.com/datasets/atharvasoundankar/global-housing-market-analysis-2015-2024
    Explore at:
    zip(18363 bytes)Available download formats
    Dataset updated
    Mar 18, 2025
    Authors
    Atharva Soundankar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.

    📑 Column Descriptions

    Column NameDescription
    CountryThe country where the housing market data is recorded 🌍
    YearThe year of observation 📅
    Average House Price ($)The average price of houses in USD 💰
    Median Rental Price ($)The median monthly rent for properties in USD 🏠
    Mortgage Interest Rate (%)The average mortgage interest rate percentage 📉
    Household Income ($)The average annual household income in USD 🏡
    Population Growth (%)The percentage increase in population over the year 👥
    Urbanization Rate (%)Percentage of the population living in urban areas 🏙️
    Homeownership Rate (%)The percentage of people who own their homes 🔑
    GDP Growth Rate (%)The annual GDP growth percentage 📈
    Unemployment Rate (%)The percentage of unemployed individuals in the labor force 💼
  2. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  3. HouseTS Dataset

    • kaggle.com
    zip
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SK W. (2025). HouseTS Dataset [Dataset]. https://www.kaggle.com/datasets/shengkunwang/housets-dataset
    Explore at:
    zip(738473375 bytes)Available download formats
    Dataset updated
    May 15, 2025
    Authors
    SK W.
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    HouseTS is a large-scale multimodal dataset for long-term U.S. house-price forecasting and socioeconomic analysis. It contains monthly observations from 2012 – 2023 for ≈ 6 000 ZIP codes spanning 30 major metropolitan areas. Each record (one ZIP × one month) provides 33 engineered features sourced from four complementary modalities:

    • Housing-market metrics — Zillow Research & Redfin Data Center: median sale/list prices, inventory, new listings, days on market, transaction volumes, and more.
    • Socioeconomic indicators — U.S. Census Bureau ACS 5-Year: income, population, labor-force size, poverty rate, rent burden, median commute time, etc.
    • Points of Interest (POIs) — OpenStreetMap via ohsome API: monthly counts of amenities such as restaurants, schools, supermarkets, parks, and transit stations.
    • Aerial imagery — USDA NAIP (1 m RGB): annual snapshots for a subset of ZIP codes in the Washington D.C.–Maryland–Virginia (DMV) region, enabling vision-based analyses.

    Typical use-cases

    • Spatio-temporal house-price prediction
    • Socioeconomic modeling that blends census and amenity data
    • Multimodal learning with tabular + satellite inputs
    • Urban-change detection through remote sensing and vision–language models

    Getting started & baselines

    Starter notebooks, data-loading utilities, and a full suite of statistical, machine-learning, and foundation-model baselines are available on GitHub:

    → GitHub repository:

  4. House Pricing Dataset

    • kaggle.com
    zip
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aly El-badry (2025). House Pricing Dataset [Dataset]. https://www.kaggle.com/datasets/alyelbadry/house-pricing-dataset
    Explore at:
    zip(815554 bytes)Available download formats
    Dataset updated
    Jan 27, 2025
    Authors
    Aly El-badry
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    House Prices Dataset

    Subtitle:

    Detailed Real Estate Data for Predicting House Prices and Analyzing Market Trends

    Description:

    This dataset contains information on 21,613 properties, making it a comprehensive resource for exploring real estate market trends and building predictive models for house prices. The data includes various features capturing property details, location, and market conditions, providing ample opportunities for data exploration, visualization, and machine learning applications.

    Key Features:

    • General Information:

      • id: Unique identifier for each property.
      • date: Date of sale.
    • Price Details:

      • price: Sale price of the house.
    • Property Features:

      • bedrooms: Number of bedrooms.
      • bathrooms: Number of bathrooms (including partials as fractions).
      • sqft_living: Living space area in square feet.
      • sqft_lot: Lot size in square feet.
      • floors: Number of floors.
      • waterfront: Whether the property has a waterfront view.
      • view: Quality of the view rating.
      • condition: Overall condition of the house.
      • grade: Grade of construction and design (scale of 1–13).
    • Additional Metrics:

      • sqft_above: Square footage of the property above ground.
      • sqft_basement: Basement area in square feet.
      • yr_built: Year the property was built.
      • yr_renovated: Year of last renovation.
    • Location Coordinates:

      • zipcode: ZIP code of the property.
      • lat and long: Latitude and longitude coordinates.
    • Neighbor Comparisons:

      • sqft_living15: Average living space of 15 nearest properties.
      • sqft_lot15: Average lot size of 15 nearest properties.

    Use Cases:

    • Predicting house prices using regression models.
    • Identifying the impact of various features (e.g., number of bedrooms, location) on property prices.
    • Analyzing market trends and spatial distribution of real estate prices.

    This dataset is a valuable resource for anyone interested in real estate analytics, machine learning, or geographic data visualization.

  5. T

    United States Nahb Housing Market Index

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Nahb Housing Market Index [Dataset]. https://tradingeconomics.com/united-states/nahb-housing-market-index
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1985 - Nov 30, 2025
    Area covered
    United States
    Description

    Nahb Housing Market Index in the United States increased to 38 points in November from 37 points in October of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  6. Data from: New York housing Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jun 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). New York housing Dataset [Dataset]. https://brightdata.com/products/datasets/real-estate/new-york-housing
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide, New York
    Description

    Enrich your real estate strategies and market insights with our comprehensive New York Housing dataset. Analyzing this dataset can aid in understanding housing market dynamics and trends, empowering organizations to refine their investment strategies and business decisions. Access the entire dataset or tailor a subset to fit your requirements.

    Popular use cases include optimizing investment strategies based on neighborhood engagement and property popularity, performing detailed user behavior analysis and segmentation by housing type, price range, and location to tailor marketing and engagement efforts, and identifying and forecasting emerging trends in the New York housing market to stay ahead in the competitive real estate industry.

  7. T

    United States Housing Starts

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Housing Starts [Dataset]. https://tradingeconomics.com/united-states/housing-starts
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Sep 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Aug 31, 2025
    Area covered
    United States
    Description

    Housing Starts in the United States decreased to 1307 Thousand units in August from 1429 Thousand units in July of 2025. This dataset provides the latest reported value for - United States Housing Starts - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. T

    United States Housing Starts Single Family

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Housing Starts Single Family [Dataset]. https://tradingeconomics.com/united-states/housing-starts-single-family
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Aug 31, 2025
    Area covered
    United States
    Description

    Housing Starts Single Family in the United States decreased to 890 Thousand units in August from 957 Thousand units in July of 2025. This dataset includes a chart with historical data for the United States Housing Starts Single Family.

  9. Housing Affordability Data System (HADS)

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Housing Affordability Data System (HADS) [Dataset]. https://catalog.data.gov/dataset/housing-affordability-data-system-hads
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    The Housing Affordability Data System (HADS) is a set of files derived from the 1985 and later national American Housing Survey (AHS) and the 2002 and later Metro AHS. This system categorizes housing units by affordability and households by income, with respect to the Adjusted Median Income, Fair Market Rent (FMR), and poverty income. It also includes housing cost burden for owner and renter households. These files have been the basis for the worst case needs tables since 2001. The data files are available for public use, since they were derived from AHS public use files and the published income limits and FMRs. These dataset give the community of housing analysts the opportunity to use a consistent set of affordability measures. The most recent year HADS is available as a Public Use File (PUF) is 2013. For 2015 and beyond, HADS is only available as an IUF and can no longer be released on a PUF. Those seeking access to more recent data should reach to the listed point of contact.

  10. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Sep 30, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  11. Housing Market Indicators - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Oct 27, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2014). Housing Market Indicators - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/housing-market-indicators
    Explore at:
    Dataset updated
    Oct 27, 2014
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    A dataset of indicators of the state of the UK housing market This is a collection of indicators from diverse sources on different aspects of the state of the UK housing market. Some indicators are updated monthly, others quarterly. Publication of this dataset began in August 2012. The choice of which indicators are included in this dataset may be subject to revision, but the intention is to update the dataset regularly as new data become available. Historical time series have been added for some (but not yet all) of the indicators.

  12. USA House Sales Data

    • kaggle.com
    zip
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul Wadood (2025). USA House Sales Data [Dataset]. https://www.kaggle.com/datasets/abdulwadood11220/usa-house-sales-data
    Explore at:
    zip(137669 bytes)Available download formats
    Dataset updated
    Jun 22, 2025
    Authors
    Abdul Wadood
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    📝 Dataset Description: This synthetic dataset contains 3,000 residential property listings modeled after real U.S. house sales data (in a Zillow-style format). It is designed for use in real estate analysis, machine learning, data visualization, and web scraping practice.

    Each row represents a unique property and includes 16 key features commonly used by real estate agents, investors, and analysts. The data spans multiple U.S. states and cities, with realistic values for price, square footage, bedroom/bathroom count, property type, and more.

    ✅ Included Fields: Price – Listing price (in USD)

    Address, City, State, Zipcode – U.S. formatted property location

    Bedrooms, Bathrooms, Area (Sqft) – Core home specs

    Lot Size, Year Built, Days on Market

    Property Type, MLS ID, Listing Agent, Status

    Listing URL – Mock Zillow-style property link

    ⚙️ Use Cases: Exploratory data analysis (EDA)

    Regression/classification model training

    Feature engineering and preprocessing

    Real estate dashboards and web app mockups

    Practice with BeautifulSoup, Pandas, or Power BI

  13. m

    Hedonic dataset of the four metropolitan housing market in South Korea

    • data.mendeley.com
    Updated Jan 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yena Song (2021). Hedonic dataset of the four metropolitan housing market in South Korea [Dataset]. http://doi.org/10.17632/d7grg846wv.3
    Explore at:
    Dataset updated
    Jan 17, 2021
    Authors
    Yena Song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Korea
    Description

    This dataset was generated for analyzing the economic impacts of subway networks on housing prices in metropolitan areas. The provision of transit networks and accompanying improvement in accessibility induce various impacts and we focused on the economic impacts realized through housing prices. As a proxy of housing price, we consider the price of condominiums, the dominant housing type in South Korea. Although our focus is transit accessibility and housing prices, the presented dataset is applicable to other studies. In particular, it provides a wide range of variables closely related to housing price, including housing properties, local amenities, local demographic characteristics, and control variables for the seasonality. Many of these variables were scientifically generated by our research team. Various distance variables were constructed in a geographic information system environment based on public data and they are useful not only for exploring environmental impacts on housing prices, but also for other statistical analyses in regard to real estate and social science research. The four metropolitan areas covered by the data—Busan, Daegu, Daejeon, and Gwangju—are independent of the transit systems of Greater Seoul, providing accurate information on the metropolitan structure separate from the capital city.

  14. House price to residence-based earnings ratio

    • ons.gov.uk
    • cy.ons.gov.uk
    • +1more
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price to residence-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/ratioofhousepricetoresidencebasedearningslowerquartileandmedian
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  15. h

    house-price

    • huggingface.co
    Updated May 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trang Dang (2024). house-price [Dataset]. https://huggingface.co/datasets/ttd22/house-price
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 15, 2024
    Authors
    Trang Dang
    Description

    ttd22/house-price dataset hosted on Hugging Face and contributed by the HF Datasets community

  16. y

    Average House Price - Dataset - York Open Data

    • data.yorkopendata.org
    • ckan.york.staging.datopian.com
    Updated Feb 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Average House Price - Dataset - York Open Data [Dataset]. https://data.yorkopendata.org/dataset/kpi-cjge121a
    Explore at:
    Dataset updated
    Feb 4, 2016
    License

    Open Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
    License information was derived automatically

    Area covered
    York
    Description

    Average House Price

  17. d

    4.09 Housing Inventory Ratio (summary)

    • catalog.data.gov
    • performance.tempe.gov
    • +8more
    Updated Aug 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 4.09 Housing Inventory Ratio (summary) [Dataset]. https://catalog.data.gov/dataset/4-09-housing-inventory-ratio-summary-901ab
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset provided by
    City of Tempe
    Description

    This page provides data for the Housing Inventory Ratio performance measure. This dataset includes both quantity and percentage information about housing stock in Tempe based on affordability categories of (Affordable, Workforce, and Market Rate). The performance measure dashboard is available at 4.09 Housing Inventory Ratio. Additional Information Source: 3rd Party ReportContact: Irma Hollamby CainContact E-Mail: irma_hollambycain@tempe.govData Source Type: Excel / CSVPreparation Method: Manual extractionPublish Frequency: AnnualPublish Method: ManualData Dictionary

  18. Existing own homes; average purchase prices, region

    • data.overheid.nl
    • cbs.nl
    • +1more
    atom, json
    Updated Feb 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (Rijk) (2025). Existing own homes; average purchase prices, region [Dataset]. https://data.overheid.nl/dataset/4146-existing-own-homes--average-purchase-prices--region
    Explore at:
    json(KB), atom(KB)Available download formats
    Dataset updated
    Feb 17, 2025
    Dataset provided by
    Statistics Netherlands
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table shows the average purchase price that has been paid in the reporting period for existing own homes purchased by a private individual. The average purchase price of existing own homes may differ from the price index of existing own homes. The average purchase price is no indicator for price developments of owner-occupied residential property. The average purchase price reflects the average price of dwellings sold in a particular period. The fact that de dwellings sold differs from one period to another is not taken into account. The following instance explains which problems are entailed by the continually changing of the quality of the dwellings sold. Suppose in February of a particular year mainly big houses with extensive gardens beautifully situated alongside canals are sold, whereas in March many small terraced houses are sold. In that case the average purchase price in February will be higher than in March but this does not mean that house prices are increased. See note 3 for a link to the article 'Why the average purchase price is not an indicator'.

    Data available from: 1995

    Status of the figures: The figures in this table are immediately definitive. The calculation of these figures is based on the number of notary transactions that are registered every month by the Dutch Land Registry Office (Kadaster). A revision of the figures is exceptional and occurs specifically if an error significantly exceeds the acceptable statistical margins. The average purchasing prices of existing owner-occupied sold homes can be calculated by Kadaster at a later date. These figures are usually the same as the publication on Statline, but in some periods they differ. Kadaster calculates the average purchasing prices based on the most recent data. These may have changed since the first publication. Statistics Netherlands uses figures from the first publication in accordance with the revision policy described above.

    Changes as of 17 February 2025: Added average purchase prices of the municipalities for the year 2024.

    When will new figures be published? New figures are published approximately one to three months after the period under review.

  19. TARP Monthly Housing Scorecard

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Treasury (2023). TARP Monthly Housing Scorecard [Dataset]. https://catalog.data.gov/dataset/tarp-monthly-housing-scorecard
    Explore at:
    Dataset updated
    Dec 1, 2023
    Dataset provided by
    United States Department of the Treasuryhttps://treasury.gov/
    Description

    Treasury and the U.S. Department of Housing and Urban Development (HUD) jointly produce a Monthly Housing Scorecard on the health of the nation’s housing market. The Scorecard is generally released during the first week of each month.

  20. T

    United Kingdom House Price Index

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom House Price Index [Dataset]. https://tradingeconomics.com/united-kingdom/housing-index
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Oct 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1983 - Oct 31, 2025
    Area covered
    United Kingdom
    Description

    Housing Index in the United Kingdom increased to 517.10 points in October from 514.20 points in September of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Atharva Soundankar (2025). 🏡 Global Housing Market Analysis (2015-2024) [Dataset]. https://www.kaggle.com/datasets/atharvasoundankar/global-housing-market-analysis-2015-2024
Organization logo

🏡 Global Housing Market Analysis (2015-2024)

Understanding Housing Market Trends Across Countries

Explore at:
zip(18363 bytes)Available download formats
Dataset updated
Mar 18, 2025
Authors
Atharva Soundankar
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.

📑 Column Descriptions

Column NameDescription
CountryThe country where the housing market data is recorded 🌍
YearThe year of observation 📅
Average House Price ($)The average price of houses in USD 💰
Median Rental Price ($)The median monthly rent for properties in USD 🏠
Mortgage Interest Rate (%)The average mortgage interest rate percentage 📉
Household Income ($)The average annual household income in USD 🏡
Population Growth (%)The percentage increase in population over the year 👥
Urbanization Rate (%)Percentage of the population living in urban areas 🏙️
Homeownership Rate (%)The percentage of people who own their homes 🔑
GDP Growth Rate (%)The annual GDP growth percentage 📈
Unemployment Rate (%)The percentage of unemployed individuals in the labor force 💼
Search
Clear search
Close search
Google apps
Main menu