This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
This is a source dataset for a Let's Get Healthy California indicator at https://letsgethealthy.ca.gov/. Infant Mortality is defined as the number of deaths in infants under one year of age per 1,000 live births. Infant mortality is often used as an indicator to measure the health and well-being of a community, because factors affecting the health of entire populations can also impact the mortality rate of infants. Although California’s infant mortality rate is better than the national average, there are significant disparities, with African American babies dying at more than twice the rate of other groups. Data are from the Birth Cohort Files. The infant mortality indicator computed from the birth cohort file comprises birth certificate information on all births that occur in a calendar year (denominator) plus death certificate information linked to the birth certificate for those infants who were born in that year but subsequently died within 12 months of birth (numerator). Studies of infant mortality that are based on information from death certificates alone have been found to underestimate infant death rates for infants of all race/ethnic groups and especially for certain race/ethnic groups, due to problems such as confusion about event registration requirements, incomplete data, and transfers of newborns from one facility to another for medical care. Note there is a separate data table "Infant Mortality by Race/Ethnicity" which is based on death records only, which is more timely but less accurate than the Birth Cohort File. Single year shown to provide state-level data and county totals for the most recent year. Numerator: Infants deaths (under age 1 year). Denominator: Live births occurring to California state residents. Multiple years aggregated to allow for stratification at the county level. For this indicator, race/ethnicity is based on the birth certificate information, which records the race/ethnicity of the mother. The mother can “decline to state”; this is considered to be a valid response. These responses are not displayed on the indicator visualization.
Mortality Rates for Lake County, Illinois. Explanation of field attributes: Average Age of Death – The average age at which a people in the given zip code die. Cancer Deaths – Cancer deaths refers to individuals who have died of cancer as the underlying cause. This is a rate per 100,000. Heart Disease Related Deaths – Heart Disease Related Deaths refers to individuals who have died of heart disease as the underlying cause. This is a rate per 100,000. COPD Related Deaths – COPD Related Deaths refers to individuals who have died of chronic obstructive pulmonary disease (COPD) as the underlying cause. This is a rate per 100,000.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Normal by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Normal. The dataset can be utilized to understand the population distribution of Normal by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Normal. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Normal.
Key observations
Largest age group (population): Male # 20-24 years (5,464) | Female # 20-24 years (6,317). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Normal Population by Gender. You can refer the same here
Data on county socioeconomic status for 2,132 US counties and each county’s average annual cardiovascular mortality rate (CMR) and total PM2.5 concentration for 21 years (1990-2010). County CMR, PM2.5, and socioeconomic data were obtained from the U.S. National Center for Health Statistics, U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system, and the U.S. Census, respectively. A socioeconomic index was created using seven county-level measures from the 1990 US census using factor analysis. Quintiles of this index were used to generate categories of county socioeconomic status. This dataset is associated with the following publication: Wyatt, L., G. Peterson, T. Wade, L. Neas, and A. Rappold. The contribution of improved air quality to reduced cardiovascular mortality: Declines in socioeconomic differences over time. ENVIRONMENT INTERNATIONAL. Elsevier B.V., Amsterdam, NETHERLANDS, 136: 105430, (2020).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains the cohort survival tables (by birth cohort of 1 year) by gender and age for the population of the Netherlands. The table shows how many boys or girls from a group of 100 thousand newborns have reached the year in which they are 1, 2, 3, etc. years old. It can also be seen how old these children will be on average.
The table can be broken down by mortality, the number of people living (table population), the number of deceased (table population) and the (cohort) life expectancy per generation by gender and age.
The (cohort) life expectancy, calculated from a cohort survival table, indicates the actual lifespan (or is expected to be, when the observed mortality rates are complemented by mortality from the forecast period). See section 4 for an explanation of the difference between the period survival table and a cohort survival table.
It is possible to choose from figures in which only observed numbers are calculated or a series in which the observed numbers are supplemented by future expectations of numbers of deceased for the birth generations that are still alive.
Data available: from birth generation 1850
Status of the figures: The figures based on the number of deaths observed up to and including the year 2020 are definitive. Figures supplemented by future expectations of the number of deceased are from the CBS Core Forecast 2021-2070. This forecast shall be reviewed once a year.
Changes as of 16 December 2021: — The figures relating to mortality observations for 2020 are included in the table; — The figures relating to the projections have been replaced by those from the Core Forecast 2021-2070.
When are new figures coming? In December 2022, mortality observations for 2021 will be reflected in this table and future expectations will be replaced by those from the Core Forecast 2022-2070.
2018 to 2020, 3-year average. Rates are age-standardized. County rates are spatially smoothed. The data can be viewed by sex and race/ethnicity. Data source: National Vital Statistics System. Additional data, maps, and methodology can be viewed on the Interactive Atlas of Heart Disease and Stroke https://www.cdc.gov/heart-disease-stroke-atlas/about/index.html
International estimates of mean life expectancy at age 40, by country for men and women
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains the number of deaths and the average age at death for all deaths in a ZIP Code between 2011 and 2015. The data were obtained by special request from Texas Department of State Health Services Vital Statistics.
Death rate has been age-adjusted by the 2000 U.S. standard populaton. All-cause mortality is an important measure of community health. All-cause mortality is heavily driven by the social determinants of health, with significant inequities observed by race and ethnicity and socioeconomic status. Black residents have consistently experienced the highest all-cause mortality rate compared to other racial and ethnic groups. During the COVID-19 pandemic, Latino residents also experienced a sharp increase in their all-cause mortality rate compared to White residents, demonstrating a reversal in the previously observed mortality advantage, in which Latino individuals historically had higher life expectancy and lower mortality than White individuals despite having lower socioeconomic status on average. The disproportionately high all-cause mortality rates observed among Black and Latino residents, especially since the onset of the COVID-19 pandemic, are due to differences in social and economic conditions and opportunities that unfairly place these groups at higher risk of developing and dying from a wide range of health conditions, including COVID-19.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table includes key figures on mortality in the Dutch population broken down by gender. The figures include totals and ratios of deceased persons, infant mortality, mortality in babies younger than 4 weeks and perinatal mortality (after a gestation period of 24 weeks or more and after a gestation period of 28 weeks or more). The table also presents figures on life expectancy at birth and average age at death.
For additional information on Mortality the reader is referred to the Dutch tables.
Data available from: 1950
Status of the figures: All data recorded in this publication are final data. The 2023 figures on stillbirths and (multiple) births are provisional, the other figures in the table are final.
Changes as of 9 December 2024: The provisional figures on the number of live births and stillbirths do not include children who were born at a gestational age that is unknown. These cases were included in the final figures for previous years. However, the 2023 data shows a larger number of children born at an unknown gestational age than in previous years. Based on an internal analysis for 2022, it appears that in the majority of cases involving an unknown gestational age, the child was born at less than 24 weeks. To ensure that the provisional 2023 figures do not overestimate the number of stillborn children born at a gestational age of over 24 weeks, children born at an unknown gestational age have now been excluded.
When will new figures be published? Final 2023 figures on the number of stillbirths and the number of births are expected to be added to the table in de third quarter of 2025. In the third quarter of 2025 final figures of 2024 will be published in this publication.
Life expectancy at birth and at age 65, by sex, on a three-year average basis.
2013 to 2015, 3-year average. Rates are age-standardized. County rates are spatially smoothed. The data can be viewed by gender and race/ethnicity. Data source: National Vital Statistics System. Additional data, maps, and methodology can be viewed on the Interactive Atlas of Heart Disease and Stroke http://www.cdc.gov/dhdsp/maps/atlas
This table contains mortality indicators by sex for Canada and all provinces except Prince Edward Island. These indicators are derived from three-year complete life tables. Mortality indicators derived from single-year life tables are also available (table 13-10-0837). For Prince Edward Island, Yukon, the Northwest Territories and Nunavut, mortality indicators derived from three-year abridged life tables are available (table 13-10-0140).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number of deaths, mortality rate, number of potential years of life lost and rate of potential years of life lost, by selected causes of death and sex, on a three-year average basis, for 2005/2007 only.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number of deaths, mortality rate, number of potential years of life lost and rate of potential years of life lost, by selected causes of death and sex, on a three-year average basis.
2017 to 2019, 3-year average. Rates are age-standardized. County rates are spatially smoothed. The data can be viewed by sex and race/ethnicity. Data source: National Vital Statistics System. Additional data, maps, and methodology can be viewed on the Interactive Atlas of Heart Disease and Stroke https://www.cdc.gov/heart-disease-stroke-atlas/about/index.html
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Life expectancy is the average number of years of life left at a particular age, based on death rates for a given period. This is a hypothetical measure useful for tracking mortality trends in the population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Retirement Age Men in the United States increased to 66.83 Years in 2025 from 66.67 Years in 2024. This dataset provides - United States Retirement Age Men - actual values, historical data, forecast, chart, statistics, economic calendar and news.
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).