MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
The first data set are regional monthly deaths by cause for England. The data is broken into 4 to 5 week periods and the data covers deaths from 4 April 2020 to 7 January 2022.
The second data set are regional monthly deaths by age and cause for England. The data is broken into 4 to 5 week periods and the data covers deaths from 4 April 2020 to 7 January 2022.
The third data set is a supplement to the tool. The workbook contains estimates of excess deaths for 6 broad age groups for other dimensions of inequality reported within the tool. These include by regions, ethnic groups, deprivation quintile, place of death and causes of death.
The fourth data set provides data on excess deaths involving circulatory disease by place of death.
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional data on excess mortality (excluding COVID-19) during heat-periods in the 65 years and over age group estimates in England, including the estimated number of deaths where the death occurred within 28 days of a positive COVID-19 result and the mean central England temperature.
Quarterly data on the number of deaths from all causes by state (of occurrence), sex, age group, and race/Hispanic origin group for the United States. Counts of deaths in more recent time periods can be compared with counts from earlier years (2015-2019) to determine if the number is higher than expected. Annual and cumulative counts (from Quarter 2, 2020 through the most recent quarter) are also shown.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of excess deaths, including deaths due to coronavirus (COVID-19) and due to other causes. Including breakdowns by age, sex and geography.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Excess deaths occurring during heat-periods, including breakdowns by sex, age group, cause of death, place of occurrence and geography.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excess Death excl COVID: Predicted: Total Estimate: Hawaii data was reported at 1,382.000 Number in 16 Sep 2023. This stayed constant from the previous number of 1,382.000 Number for 09 Sep 2023. Excess Death excl COVID: Predicted: Total Estimate: Hawaii data is updated weekly, averaging 1,382.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 1,382.000 Number in 16 Sep 2023 and a record low of 1,382.000 Number in 16 Sep 2023. Excess Death excl COVID: Predicted: Total Estimate: Hawaii data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excess Death excl COVID: Predicted: Single Excess Est: New Mexico data was reported at 0.000 Number in 16 Sep 2023. This stayed constant from the previous number of 0.000 Number for 09 Sep 2023. Excess Death excl COVID: Predicted: Single Excess Est: New Mexico data is updated weekly, averaging 7.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 98.000 Number in 08 Jan 2022 and a record low of 0.000 Number in 16 Sep 2023. Excess Death excl COVID: Predicted: Single Excess Est: New Mexico data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
Weekly data on the number of deaths from all causes by sex, age group, and race/Hispanic origin group for the United States. Counts of deaths in more recent weeks can be compared with counts from earlier years (2015-2019) to determine if the number is higher than expected.
http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa
This dataset contains excess mortality data for the period covering the 2020 Covid-19 pandemic.
The data contains the excess mortality data for all known jurisdictions which publish all-cause mortality data meeting the following criteria:
Most countries publish mortality data with a longer periodicity (typically quarterly or even annually), a longer publication lag time, or both. This sort of data is not suitable for ongoing analysis during an epidemic and is therefore not included here.
"Excess mortality" refers to the difference between deaths from all causes during the pandemic and the historic seasonal average. For many of the jurisdictions shown here, this figure is higher than the official Covid-19 fatalities that are published by national governments each day. While not all of these deaths are necessarily attributable to the disease, it does leave a number of unexplained deaths that suggests that the official figures of deaths attributed may significant undercounts of the pandemic's impact.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Excess Deaths: Above Expected: Alabama data was reported at 0.000 Number in 30 Oct 2021. This stayed constant from the previous number of 0.000 Number for 23 Oct 2021. United States Excess Deaths: Above Expected: Alabama data is updated weekly, averaging 0.000 Number from Jan 2017 (Median) to 30 Oct 2021, with 251 observations. The data reached an all-time high of 679.000 Number in 11 Sep 2021 and a record low of 0.000 Number in 30 Oct 2021. United States Excess Deaths: Above Expected: Alabama data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G010: Number of Excess Deaths: by States: All Causes (Discontinued).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Excess Death excl COVID: Predicted: Single Excess Est: Wyoming data was reported at 0.000 Number in 16 Sep 2023. This stayed constant from the previous number of 0.000 Number for 09 Sep 2023. United States Excess Death excl COVID: Predicted: Single Excess Est: Wyoming data is updated weekly, averaging 2.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 51.000 Number in 04 Jan 2020 and a record low of 0.000 Number in 16 Sep 2023. United States Excess Death excl COVID: Predicted: Single Excess Est: Wyoming data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Excess Deaths: Above Expected: Texas data was reported at 0.000 Number in 30 Oct 2021. This stayed constant from the previous number of 0.000 Number for 23 Oct 2021. United States Excess Deaths: Above Expected: Texas data is updated weekly, averaging 0.000 Number from Jan 2017 (Median) to 30 Oct 2021, with 251 observations. The data reached an all-time high of 2,674.000 Number in 16 Jan 2021 and a record low of 0.000 Number in 30 Oct 2021. United States Excess Deaths: Above Expected: Texas data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G010: Number of Excess Deaths: by States: All Causes (Discontinued).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths registered in England and Wales by week, from 28 December 2019 to 2 July 2021. Breakdowns include country, sex, age group, region, place of death, and leading cause. Includes analysis of excess deaths and relative cumulative age-standardised mortality rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Excess Death excl COVID: Predicted: Single Estimate: Arkansas data was reported at 0.000 Number in 16 Sep 2023. This records a decrease from the previous number of 41.000 Number for 09 Sep 2023. United States Excess Death excl COVID: Predicted: Single Estimate: Arkansas data is updated weekly, averaging 10.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 112.000 Number in 13 Jan 2018 and a record low of 0.000 Number in 16 Sep 2023. United States Excess Death excl COVID: Predicted: Single Estimate: Arkansas data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
This dataset presents the latest data on excess mortality by week, for all OECD countries for which data are available. Please refer to the Methodological Note below for details on methods of calculation and caution regarding cross-country comparisons. Sources by country are available in a separate file in Excel format.
WARNING: Reporting of the number of All-cause and COVID-19 deaths particularly for the most recent weeks may be only partial and subject to significant revision. The calculated values for excess deaths for the most recent weeks are therefore also subject to significant revision.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Excess Death excl COVID: Predicted: Total Estimate: South Dakota data was reported at 600.000 Number in 16 Sep 2023. This stayed constant from the previous number of 600.000 Number for 09 Sep 2023. United States Excess Death excl COVID: Predicted: Total Estimate: South Dakota data is updated weekly, averaging 600.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 600.000 Number in 16 Sep 2023 and a record low of 600.000 Number in 16 Sep 2023. United States Excess Death excl COVID: Predicted: Total Estimate: South Dakota data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excess Death excl COVID: Predicted: Single Estimate: Missouri data was reported at 6.000 Number in 16 Sep 2023. This records an increase from the previous number of 0.000 Number for 09 Sep 2023. Excess Death excl COVID: Predicted: Single Estimate: Missouri data is updated weekly, averaging 0.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 299.000 Number in 20 Jan 2018 and a record low of 0.000 Number in 09 Sep 2023. Excess Death excl COVID: Predicted: Single Estimate: Missouri data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
https://www.usa.gov/government-works/https://www.usa.gov/government-works/
Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19.
Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by the jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected.
Estimates of excess deaths can be calculated in a variety of ways and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.
Dashboard: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://raw.githubusercontent.com/kabartay/kaggle-datasets-supports/master/images/WeeklyExcessDeaths.png%20=1349x572" alt="">
Thanks to:
- data.cdc.gov
- healthdata.gov
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.