https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for 100 Richest People In World
Dataset Summary
This dataset contains the list of Top 100 Richest People in the World Column Information:-
Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain
Join our Community
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘World's Billionaires’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/seriadiallo1/world-billionaires on 14 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains 200 rows and 7 columns.
The World's Billionaires is an annual ranking by documented net worth of the world's wealthiest billionaires compiled and published in March annually by the American business magazine Forbes. The list was first published in March 1987. The total net worth of each individual on the list is estimated and is cited in United States dollars, based on their documented assets and accounting for debt. Royalty and dictators whose wealth comes from their positions are excluded from these lists. This ranking is an index of the wealthiest documented individuals, excluding and ranking against those with wealth that is not able to be completely ascertained. (wikipedia)
--- Original source retains full ownership of the source dataset ---
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains the Forbes Billionaire List for 2024, featuring the top individuals ranked by their net worth. It includes essential details such as their names, rankings, and net worth. This data is ideal for quick analysis and insights into the wealthiest people globally in 2024.
The United States is leading the ranking by number of high networth individuals , recording **** million individuals. Following closely behind is China with **** million individuals, while Lesotho is trailing the ranking with * thousand individuals, resulting in a difference of **** million individuals to the ranking leader, the United States. High Net Worth Individuals are here defined as persons with investible assets of at least *********** U.S. dollars in current exchange rate terms.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents a breakdown of households across various income brackets in Black Earth, WI, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Black Earth, WI reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Black Earth households based on income levels.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth median household income. You can refer the same here
Global Volcano Total Economic Loss Risk Deciles is a 2.5 minute grid of global volcano total economic loss risks. First, subnational distributions of Gross Domestic Product (GDP) are computed using a two-fold process. Where applicable, the proportional contribution of subnational Units are determined following the methodology of Sachs et al. (2003) and these proportions are used against World Bank Development Indicators to determine a GDP value for the subnational Unit. Once a national GDP has been spatially stratified into the smallest administrative Units available, it is further distributed based upon Gridded Population of the World, Version 3 (GPWv3) population distributions. A per capita contribution value is determined for each Unit, and this value is multiplied by the population per grid cell. Once the GDP has been determined on a per grid cell basis, then the spatially variable loss rate as derived from EM-DAT historical records is used to determine the total economic loss posed to a grid cell by volcano hazards. The final surface does not present absolute values of total economic loss, but rather a relative decile (1-10) ranking of grid cells based upon the calculated economic loss risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).
The Global Earthquake Total Economic Loss Risk Deciles is a 2.5 minute grid of global earthquake total economic loss risks. A process of spatially allocating Gross Domestic Product (GDP) based upon the Sachs et al. (2003) methodology is utilized. First the proportional contributions of subnational Units to their respective national GDP are determined using sources of various origin. The contribution rates are then applied to published World Bank Development Indicators to determine a GDP value for the subnational Unit. Once the national GDP has been spatially stratified into the smallest administrative Units available, GDP values for grid cells are derived using Gridded Population of the World, Version 3 (GPWv3) data population distributions. A per capita contribution value is determined within each subnational Unit, and then this value is multiplied by the population per grid cell. Once a GDP value has been determined on a per grid cell basis, then the regionally variable loss rate as derived from the historical records of EM-DAT is used to determine the total economic loss risks posed to a grid cell by earthquake hazards. The final surface does not present absolute values of total economic loss, but rather a relative decile (1-10 with increasing risk) ranking of grid cells based upon the calculated economic loss risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Earth. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Earth, the median income for all workers aged 15 years and older, regardless of work hours, was $37,763 for males and $16,019 for females.
These income figures highlight a substantial gender-based income gap in Earth. Women, regardless of work hours, earn 42 cents for each dollar earned by men. This significant gender pay gap, approximately 58%, underscores concerning gender-based income inequality in the city of Earth.
- Full-time workers, aged 15 years and older: In Earth, among full-time, year-round workers aged 15 years and older, males earned a median income of $49,236, while females earned $35,750, leading to a 27% gender pay gap among full-time workers. This illustrates that women earn 73 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Earth.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents a breakdown of households across various income brackets in Globe, AZ, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Globe, AZ reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Globe households based on income levels.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe median household income. You can refer the same here
This dataset contains a wealth of information from 52,000 loan applications, offering detailed insights into the factors that influence loan approval decisions. Collected from financial institutions, this data is highly valuable for credit risk analysis, financial modeling, and predictive analytics. The dataset is particularly useful for anyone interested in applying machine learning techniques to real-world financial decision-making scenarios.
Overview: This dataset provides information about various applicants and the loans they applied for, including their demographic details, income, loan terms, and approval status. By analyzing this data, one can gain an understanding of which factors are most critical for determining the likelihood of loan approval. The dataset can also help in evaluating credit risk and building robust credit scoring systems.
Dataset Columns: Applicant_ID: Unique identifier for each loan application. Gender: Gender of the applicant (Male/Female). Age: Age of the applicant. Marital_Status: Marital status of the applicant (Single/Married). Dependents: Number of dependents the applicant has. Education: Education level of the applicant (Graduate/Not Graduate). Employment_Status: Employment status of the applicant (Employed, Self-Employed, Unemployed). Occupation_Type: Type of occupation, which provides insights into the nature of the applicant’s job (Salaried, Business, Others). Residential_Status: Type of residence (Owned, Rented, Mortgage). City/Town: The city or town where the applicant resides. Annual_Income: The total annual income of the applicant, a key factor in loan eligibility. Monthly_Expenses: The monthly expenses of the applicant, indicating their financial obligations. Credit_Score: The applicant's credit score, reflecting their creditworthiness. Existing_Loans: Number of existing loans the applicant is servicing. Total_Existing_Loan_Amount: The total amount of all existing loans the applicant has. Outstanding_Debt: The remaining amount of debt yet to be paid by the applicant. Loan_History: The applicant’s previous loan history (Good/Bad), indicating their repayment reliability. Loan_Amount_Requested: The loan amount the applicant has applied for. Loan_Term: The term of the loan in months. Loan_Purpose: The purpose of the loan (e.g., Home, Car, Education, Personal, Business). Interest_Rate: The interest rate applied to the loan. Loan_Type: The type of loan (Secured/Unsecured). Co-Applicant: Indicates if there is a co-applicant for the loan (Yes/No). Bank_Account_History: Applicant’s banking history, showing past transactions and reliability. Transaction_Frequency: The frequency of financial transactions in the applicant’s bank account (Low/Medium/High). Default_Risk: The risk level of the applicant defaulting on the loan (Low/Medium/High). Loan_Approval_Status: Final decision on the loan application (Approved/Rejected).
The Global Flood Total Economic Loss Risk Deciles is a 2.5 minute grid of global flood total economic loss risks. A process of spatially allocating Gross Domestic Product (GDP) based upon the Sachs et al. (2003) methodology is utilized. First the proportional contributions of subnational Units to their respective national GDP are determined using sources of various origins. The contribution rates are then applied to published World Bank Development Indicators to determine a GDP value for the subnational Unit. Once the national GDP has been spatially stratified into the smallest administrative Units available, GDP values for grid cells are derived using Gridded Population of the World, Version 3 (GPWv3) data of population distributions. A per capita contribution value is determined within each subnational Unit, and this value is multiplied by the population per grid cell. Once a GDP value has been determined on a per grid cell basis, then the regionally variable loss rate as derived from the historical records of EM-DAT is used to determine the total economic loss risks posed to a grid cell by flood hazards. The final surface does not present absolute values of total economic loss, but rather a relative decile (1-10 with increasing risk) ranking of grid cells based upon the calculated economic loss risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents a breakdown of households across various income brackets in Blue Earth, MN, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Blue Earth, MN reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Blue Earth households based on income levels.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Blue Earth County. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Blue Earth County, the median income for all workers aged 15 years and older, regardless of work hours, was $42,075 for males and $27,496 for females.
These income figures highlight a substantial gender-based income gap in Blue Earth County. Women, regardless of work hours, earn 65 cents for each dollar earned by men. This significant gender pay gap, approximately 35%, underscores concerning gender-based income inequality in the county of Blue Earth County.
- Full-time workers, aged 15 years and older: In Blue Earth County, among full-time, year-round workers aged 15 years and older, males earned a median income of $61,546, while females earned $50,159, leading to a 19% gender pay gap among full-time workers. This illustrates that women earn 81 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Blue Earth County.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth County median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Black Earth town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Black Earth town, the median income for all workers aged 15 years and older, regardless of work hours, was $68,125 for males and $58,750 for females.
Based on these incomes, we observe a gender gap percentage of approximately 14%, indicating a significant disparity between the median incomes of males and females in Black Earth town. Women, regardless of work hours, still earn 86 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Black Earth town, among full-time, year-round workers aged 15 years and older, males earned a median income of $93,000, while females earned $78,542, leading to a 16% gender pay gap among full-time workers. This illustrates that women earn 84 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Black Earth town offers better opportunities for women in non-full-time positions.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth town median household income by race. You can refer the same here
The Global Cyclone Total Economic Loss Risk Deciles is a 2.5 minute grid of global cyclone total economic loss risks. A process of spatially allocating Gross Domestic Product (GDP) based upon the Sachs et al. (2003) methodology is utilized. First the proportional contributions of subnational Units to their respective national GDP are determined using sources of various origins. The contribution rates are then applied to published World Bank Development Indicators to determine a GDP value for the subnational Unit. Once the national GDP is spatially stratified into the smallest administrative Units available, GDP values for grid cells are derived using population distribution data. A per capita contribution value is determined within each subnational Unit, and this value is multiplied by the population per grid cell as determined from Gridded Population of the World, Version 3 (GPWv3) data. Once a GDP value is determined on a per grid cell basis, then the regionally variable loss rate, as derived from the historical records of EM-DAT, is used to determine the total economic loss risks posed to a grid cell by cyclone hazards. The final surface does not present absolute values of total economic loss, but rather a relative decile (1-10 with increasing risk) ranking of grid cells based upon the calculated economic loss risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
The Global Landslide Total Economic Loss Risk Deciles is a 2.5 minute grid of global landslide total economic loss risks. A process of spatially allocating Gross Domestic Product (GDP) based upon the Sachs et al. (2003) methodology is utilized. First the proportional contributions of subnational Units to their respective national GDP are determined using sources of various origins. The contribution rates are then applied to published World Bank Development Indicators to determine a GDP value for the subnational Unit. Once the national GDP has been spatially stratified into the smallest administrative Units available, GDP values for grid cells are derived using Gridded Population of the World, Version 3 (GPWv3) data of population distributions. A per capita contribution value is determined within each subnational Unit, and this value is multiplied by the population per grid cell. Once a GDP value has been determined on a per grid cell basis, then the regionally variable loss rate as derived from the historical records of EM-DAT is used to determine the total economic loss risks posed to a grid cell by landslide hazards. The final surface does not present absolute values of total economic loss, but rather a relative decile (1-10 with increasing risk) ranking of grid cells based upon the calculated economic loss risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).
In December 2009, Pew Research Center released "Global Restrictions on Religion," the first in a series of annual reports on a data-coding project that seeks to measure levels of government restrictions on religion and social hostilities involving religion around the world. As of February 2015, Pew Research had published six reports on global restrictions on religion, analyzing a total of seven years' worth of data (the first two reports covered a total of three years, from 2007 to 2009). [...] In order to provide social science researchers and the general public with easier access to the data, Pew Research Center has released the full dataset.
The data are presented as a long-format dataset, in which each row is a country-year observation (for example, "Afghanistan, 2007"). The columns contain all of the variables presented in Pew Research Center's annual reports on restrictions on religion, as well as some additional variables analyzed in separate studies. The dataset contains data from 2007 through 2013; as additional years of data are coded, the dataset will be updated.
The codebook proceeds in three parts. First, it explains the methodology and coding procedures used to collect the data. Second it discusses the Government Restrictions Index and Social Hostilities Index, including what they measure and how they are calculated. Finally, it describes each of the variables included in the dataset, along with answer values and definitions of key terms.
This dataset offers a wealth of information about all countries worldwide, covering a broad range of indicators and attributes. It includes demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset provides a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
The dataset is provided as a CSV file named world-data-2023.csv
, with a size of 49.21 kB. It contains 35 columns and includes data for 195 unique countries, implying 195 records or rows.
Ideal applications and use cases for this dataset include: * Analysing population density and land area to study spatial distribution patterns. * Investigating the relationship between agricultural land and food security. * Examining carbon dioxide emissions and their impact on climate change. * Exploring correlations between economic indicators such as GDP and various socio-economic factors. * Investigating educational enrolment rates and their implications for human capital development. * Analysing healthcare metrics such as infant mortality and life expectancy to assess overall well-being. * Studying labour market dynamics through indicators such as labour force participation and unemployment rates. * Investigating the role of taxation and its impact on economic development. * Exploring urbanisation trends and their social and environmental consequences.
This dataset offers a global geographic scope, covering all countries worldwide. The data pertains to the year 2023. It includes diverse demographic, economic, and social indicators, providing broad insights into various aspects of nations.
Attribution 4.0 International (CC BY 4.0)
This dataset is suitable for: * Data Analysts and Scientists: For statistical modelling, trend analysis, and pattern discovery. * Researchers and Academics: To support studies in economics, sociology, environmental science, and public health. * Policymakers and Government Agencies: For informing policy decisions and understanding global benchmarks. * Students: As a valuable resource for
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for HOUSEHOLDS DEBT TO INCOME reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for 100 Richest People In World
Dataset Summary
This dataset contains the list of Top 100 Richest People in the World Column Information:-
Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain
Join our Community
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.