48 datasets found
  1. Consumer Price Index (CPI)

    • datasets.ai
    • cloud.csiss.gmu.edu
    • +1more
    0, 21
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Labor Bureau of Labor Statistics (2024). Consumer Price Index (CPI) [Dataset]. https://datasets.ai/datasets/consumer-price-index-cpi-ee18b
    Explore at:
    0, 21Available download formats
    Dataset updated
    Sep 11, 2024
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Authors
    U.S. Department of Labor Bureau of Labor Statistics
    Description

    The Consumer Price Index (CPI) is a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services. Indexes are available for the U.S. and various geographic areas. Average price data for select utility, automotive fuel, and food items are also available. Prices for the goods and services used to calculate the CPI are collected in 75 urban areas throughout the country and from about 23,000 retail and service establishments. Data on rents are collected from about 43,000 landlords or tenants.

    More information and details about the data provided can be found at http://www.bls.gov/cpi

  2. Consumer Price Index (CPI) Trends in India Feb'24

    • kaggle.com
    Updated Aug 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prathamjyot Singh (2024). Consumer Price Index (CPI) Trends in India Feb'24 [Dataset]. https://www.kaggle.com/datasets/prathamjyotsingh/state-level-consumer-price-index
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 24, 2024
    Dataset provided by
    Kaggle
    Authors
    Prathamjyot Singh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    India
    Description

    Explanation of CPI and the Dataset:

    What is CPI?

    CPI (Consumer Price Index) measures the average change in prices over time that consumers pay for a basket of goods and services. It is a key indicator of inflation and is used by governments and central banks to monitor price stability and for inflation targeting. Components: The construction of CPI involves two main components: Weighting Diagrams: These represent the consumption patterns of households. Price Data: This is collected at regular intervals to track changes in prices.

    Role of the Central Statistics Office (CSO):

    The CSO, under the Ministry of Statistics and Programme Implementation, is responsible for releasing CPI data. The indices are released for Rural, Urban, and Combined sectors for all-India and individual States/UTs.

    Dataset Alignment:

    Sectors: The dataset includes a "Sector" column that categorizes data into "Rural," "Urban," and "Rural+Urban," aligning with the CPI data released by the CSO. Time Period: The "Year" and "Name" (which appears to represent months) columns in the dataset track the data over time, consistent with the monthly release schedule by the CSO starting from January 2011. State/UT Data: Each column corresponding to a state or union territory likely represents the CPI values for that region. The numeric values under each state/UT column represent the CPI index values, with a base of 2010=100. Purpose: This data can be used to analyze inflation trends, price stability, and the impact on economic policies, such as adjustments to dearness allowance for employees. Practical Use of This Data: Inflation Analysis: By examining the changes in CPI values across different states, analysts can study regional inflation trends and compare them to the national average. Policy Making: Governments and central banks can use this data to design and adjust policies aimed at controlling inflation, targeting specific regions or sectors that are experiencing higher inflation. Wage Indexation: Companies and governments can use CPI data to adjust wages and allowances in line with inflation, ensuring that purchasing power is maintained.

  3. w

    Consumer Price Indices

    • data360.worldbank.org
    Updated Aug 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Consumer Price Indices [Dataset]. https://data360.worldbank.org/en/dataset/FAO_CP
    Explore at:
    Dataset updated
    Aug 18, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2024
    Description

    The FAOSTAT monthly Food CPI and General CPI database was based on the ILO CPI data until December 2014. In 2014, IMF-ILO-FAO agreed to transfer global CPI data compilation from ILO to IMF. Upon agreement, CPIs for all items and its sub components originates from the International Monetary Fund (IMF), and the UN Statistics Division(UNSD) for countries not covered by the IMF. However, due to a limited time coverage from IMF and UNSD for a number of countries, the Organisation for Economic Co-operation and Development (OECD), Central Bank of Western African States (BCEAO), Eastern Caribbean Central Bank (ECCB), UNdata, United Nations Conference on Trade and Development (UNCTAD) and national statistical office website data are used for missing historical data from IMF and UNSD food CPI.

    The FAO CPI dataset for all items(or general CPI) and the Food CPI, consists of a complete and consistent set of time series from January 2000 onwards. Data gaps on monthly Food CPI and General CPI are filled using statistical estimation procedures to have full data coverage for all countries for Food CPI and for General CPI. These indices measure the price change between the current and reference periods of the average basket of goods and services purchased by households. The General CPI is typically used to measure and monitor inflation, set monetary policy targets, index social benefits such as pensions and unemployment benefits, and to escalate thresholds and credits in the income tax systems and wages in public and private wage contracts. The FAOSTAT monthly Food CPI inflation rates are annual year-over-year inflation or percentage change over corresponding month of the previous year.

    The data included in Data360 is a subset of the data available from the source. Please refer to the source for complete data and methodology details.

    This collection includes only a subset of indicators from the source dataset.

  4. A

    ‘🚊 Consumer Price Index’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 28, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2013). ‘🚊 Consumer Price Index’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-consumer-price-index-ba9d/latest
    Explore at:
    Dataset updated
    Aug 28, 2013
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘🚊 Consumer Price Index’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/consumer-price-indexe on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    9The Consumer Price Index for All Urban Consumers: All Items (CPIAUCSL) is a measure of the average monthly change in the price for goods and services paid by urban consumers between any two time periods.(1) It can also represent the buying habits of urban consumers. This particular index includes roughly 88 percent of the total population, accounting for wage earners, clerical workers, technical workers, self-employed, short-term workers, unemployed, retirees, and those not in the labor force.(1)

    The CPIs are based on prices for food, clothing, shelter, and fuels; transportation fares; service fees (e.g., water and sewer service); and sales taxes. Prices are collected monthly from about 4,000 housing units and approximately 26,000 retail establishments across 87 urban areas.(1) To calculate the index, price changes are averaged with weights representing their importance in the spending of the particular group. The index measures price changes (as a percent change) from a predetermined reference date.(1) In addition to the original unadjusted index distributed, the Bureau of Labor Statistics also releases a seasonally adjusted index. The unadjusted series reflects all factors that may influence a change in prices. However, it can be very useful to look at the seasonally adjusted CPI, which removes the effects of seasonal changes, such as weather, school year, production cycles, and holidays.(1)

    The CPI can be used to recognize periods of inflation and deflation. Significant increases in the CPI within a short time frame might indicate a period of inflation, and significant decreases in CPI within a short time frame might indicate a period of deflation. However, because the CPI includes volatile food and oil prices, it might not be a reliable measure of inflationary and deflationary periods. For a more accurate detection, the core CPI (Consumer Price Index for All Urban Consumers: All Items Less Food & Energy [CPILFESL]) is often used. When using the CPI, please note that it is not applicable to all consumers and should not be used to determine relative living costs.(1) Additionally, the CPI is a statistical measure vulnerable to sampling error since it is based on a sample of prices and not the complete average.(1)

    Attribution: US. Bureau of Labor Statistics from The Federal Reserve Bank of St. Louis

    For more information on the consumer price indexes, see:

    This dataset was created by Finance and contains around 900 samples along with Consumer Price Index For All Urban Consumers: All Items, Title:, technical information and other features such as: - Consumer Price Index For All Urban Consumers: All Items - Title: - and more.

    How to use this dataset

    • Analyze Consumer Price Index For All Urban Consumers: All Items in relation to Title:
    • Study the influence of Consumer Price Index For All Urban Consumers: All Items on Title:
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Finance

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  5. d

    Consumer Price Index

    • data-dathere.dataops.dathere.com
    • data.dathere.com
    csv
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    datHere (2025). Consumer Price Index [Dataset]. https://data-dathere.dataops.dathere.com/am/dataset/consumer-price-index
    Explore at:
    csv(20013), csv(924008), csv(817028)Available download formats
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    datHere
    Description

    The Consumer Price Index (CPI) is a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services. Indexes are available for the U.S. and various geographic areas. Average price data for select utility, automotive fuel, and food items are also available. Prices for the goods and services used to calculate the CPI are collected in 75 urban areas throughout the country and from about 23,000 retail and service establishments. Data on rents are collected from about 43,000 landlords or tenants.

  6. Consumer Price Index (CPI) - Dataset - Him Data portal

    • ckan.himdataportal.com
    Updated Jun 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.himdataportal.com (2024). Consumer Price Index (CPI) - Dataset - Him Data portal [Dataset]. https://ckan.himdataportal.com/dataset/consumer-price-index-cpi
    Explore at:
    Dataset updated
    Jun 26, 2024
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    The Consumer Price Index (CPI) is a statistical measure that tracks the average change over time in the prices paid by consumers for a basket of goods and services. It serves as a key indicator of inflation, reflecting the cost of living and the purchasing power of a currency. Calculated periodically, the CPI is used by governments, economists, and policymakers to make informed decisions on monetary policy, wage negotiations, and economic forecasting. By comparing the CPI across different periods, one can gauge the health of an economy, understand inflationary pressures, and assess the impact of economic policies on everyday consumer expenses.

  7. d

    Annual Consumer Price Index (CPI) - Dataset - Datopian CKAN instance

    • demo.dev.datopian.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Annual Consumer Price Index (CPI) - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/annual-consumer-price-index-cpi
    Explore at:
    Dataset updated
    Mar 18, 2025
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Annual Consumer Price Index (CPI) values for most countries in the world, measured relative to the reference year of 2005 (where the value of CPI for all countries is 100). The data, collected by The World Bank from 1960 to 2011, can be used to track inflation rates and analyze changes in purchasing power over time. However, it should be noted that there are some missing values in the dataset which may require users to make educated guesses. The data can be downloaded through The World Bank's API in CSV format, making it easily accessible for analysis and use in various applications.

  8. Consumer price inflation consumption segment indices and price quotes

    • ons.gov.uk
    • cy.ons.gov.uk
    csv
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Consumer price inflation consumption segment indices and price quotes [Dataset]. https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Price quote data (for locally collected data only) and consumption segment indices that underpin consumer price inflation statistics, giving users access to the detailed data that are used in the construction of the UK’s inflation figures. The data are being made available for research purposes only and are not an accredited official statistic. From October 2024, private school fees and part-time education classes have been included in the consumption segment indices file. For more information on the introduction of consumption segments, please see the Consumer Prices Indices Technical Manual, 2019. Note that this dataset was previously called the consumer price inflation item indices and price quotes dataset.

  9. n

    Consumer Price Index (CPI)

    • db.nomics.world
    Updated Aug 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DBnomics (2025). Consumer Price Index (CPI) [Dataset]. https://db.nomics.world/IMF/CPI
    Explore at:
    Dataset updated
    Aug 13, 2025
    Dataset provided by
    International Monetary Fund
    Authors
    DBnomics
    Description

    Consumer price indexes (CPIs) are index numbers that measure changes in the prices of goods and services purchased or otherwise acquired by households, which households use directly, or indirectly, to satisfy their own needs and wants. In practice, most CPIs are calculated as weighted averages of the percentage price changes for a specified set, or ‘‘basket’’, of consumer products, the weights reflecting their relative importance in household consumption in some period. CPIs are widely used to index pensions and social security benefits. CPIs are also used to index other payments, such as interest payments or rents, or the prices of bonds. CPIs are also commonly used as a proxy for the general rate of inflation, even though they measure only consumer inflation. They are used by some governments or central banks to set inflation targets for purposes of monetary policy. The price data collected for CPI purposes can also be used to compile other indices, such as the price indices used to deflate household consumption expenditures in national accounts, or the purchasing power parities used to compare real levels of consumption in different countries.

    In an effort to further coordinate and harmonize the collection of CPI data, the international organizations agreed that the International Monetary Fund (IMF) and the Organisation for Economic Cooperation and Development (OECD) would assume responsibility for the international collection and dissemination of national CPI data. Under this data collection initiative, countries are reporting the aggregate all items index; more detailed indexes and weights for 12 subgroups of consumption expenditure (according to the so-called COICOP-classification), and detailed metadata. These detailed data represent a valuable resource for data users throughout the world and this portal would not be possible without the ongoing cooperation of all reporting countries. In this effort, the OECD collects and validates the data for their member countries, including accession and key partner countries, whereas the IMF takes care of the collection of data for all other countries.

  10. Consumer Price Index 2021 - West Bank and Gaza

    • pcbs.gov.ps
    Updated May 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2023). Consumer Price Index 2021 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/711
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2021
    Area covered
    West Bank, Gaza, Gaza Strip
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. For example, for the CPI, the variation between its goods was very low, except in some cases such as banana, tomato, and cucumber goods that had a high coefficient of variation during 2019 due to the high oscillation in their prices. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes

  11. R

    Cpi Project Dataset

    • universe.roboflow.com
    zip
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CPIN Project (2024). Cpi Project Dataset [Dataset]. https://universe.roboflow.com/cpin-project/cpi-project/model/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset authored and provided by
    CPIN Project
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Variables measured
    Pallet Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Warehouse Inventory Management: The CPI-Project model can be used to automate the tracking and classification of different types of pallets in a warehouse, enabling efficient organization and retrieval of inventory.

    2. Supply Chain Optimization: Integration of the model into supply chain management systems can help monitor and optimize the transportation and distribution of goods by accurately identifying pallet types and ensuring correct loading and unloading procedures.

    3. Recycling and Waste Management: The model could aid in the identification and sorting of reusable or recyclable pallets from waste, facilitating a more eco-friendly disposal process and reducing environmental impact.

    4. Retail Stock Management: Implementing the CPI-Project model in retail environments can help manage in-store inventory and restocking processes by accurately identifying the types of pallets being used and their corresponding products.

    5. Construction and Infrastructure: The model can be used to assess and monitor construction sites, ensuring that the required materials and equipment are available and organized, and detecting any potential safety hazards related to the improper storage or stacking of pallets.

  12. Consumer Price Index by product group, monthly, percentage change, not...

    • www150.statcan.gc.ca
    Updated Jul 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Consumer Price Index by product group, monthly, percentage change, not seasonally adjusted, Canada, provinces, Whitehorse, Yellowknife and Iqaluit [Dataset]. http://doi.org/10.25318/1810000401-eng
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Monthly indexes and percentage changes for major components and special aggregates of the Consumer Price Index (CPI), not seasonally adjusted, for Canada, provinces, Whitehorse, Yellowknife and Iqaluit. Data are presented for the corresponding month of the previous year, the previous month and the current month. The base year for the index is 2002=100.

  13. I

    Israel IL: CPI: Local Source Base Year: Clothing and Footwear

    • ceicdata.com
    Updated Sep 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Israel IL: CPI: Local Source Base Year: Clothing and Footwear [Dataset]. https://www.ceicdata.com/en/israel/consumer-price-index-oecd-member-annual/il-cpi-local-source-base-year-clothing-and-footwear
    Explore at:
    Dataset updated
    Sep 8, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Israel
    Variables measured
    Consumer Prices
    Description

    Israel IL: Consumer Price Index (CPI): Local Source Base Year: Clothing and Footwear data was reported at 90.467 2020=100 in 2022. This records a decrease from the previous number of 95.092 2020=100 for 2021. Israel IL: Consumer Price Index (CPI): Local Source Base Year: Clothing and Footwear data is updated yearly, averaging 119.871 2020=100 from Dec 1985 (Median) to 2022, with 38 observations. The data reached an all-time high of 167.358 2020=100 in 1997 and a record low of 53.850 2020=100 in 1985. Israel IL: Consumer Price Index (CPI): Local Source Base Year: Clothing and Footwear data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Israel – Table IL.OECD.MEI: Consumer Price Index: COICOP 1999: OECD Member: Annual. The CPI measures the change in prices which consumer pay for fixed market basket of consumption goods and services. Price coverage: Prices include applicable taxes (VAT) and fees on the products at the time of sale. Cash payments are the basis for the price survey. Monthly installment payment and credit card interest are excluded. Price collection procedure: The data collection methods are adapted according to the specific characteristics of the CPI classes. The main price surveys are: Computer Assisted Telephone Interviews (CATI), conducted by the CBS staff at the central office; Computer Assisted Personal Interviews (CAPI) by field collectors with handheld personal computers (HPC) and Direct Data Entry (DDE) into the database. Also for some special items Internet is used either in parallel with CAPI or as a part of DDE collection. The CPI includes a measure of rented housing Owner Occupied Housing (OOH) is included in the CPI and is calculated using rental equivalent method. The method for imputation of OOH is based on stratified average prices of contracts that are subject to renewal. In order to reduce variance in the monthly series, two month moving averages are compared each month. However, the method for OOH still leaves room for quality differences to play role in month-to-month average price changes. The method relies on successful stratification of apartments to groups whose relative price changes are as similar as possible. While the stratification is based on apartment location and number of rooms, some quality characteristics may experience month-to-month variation. Treatment of own account production is not included Goods and services sold illegally, second hand goods, goods and services partially or totally subsidized by the government and financial transactions are not included. Insurance: Insurance of personal transport and Health insurance (private and provided by the Government) are included. Treatment of missing items: Price changes for missing observations are imputed based on the price movements of other observations of the same item. Selection of replacement items: Products that become permantely unavailable are replaced in the sample and enumerators select a replacement possessing as many of the same quality characteristics as possible. Prices from previous period are sought for the replacement item for linking purpose. Treatment of quality change: There are two types of replacement approach: comparable and non-comparable. If a new product possesses the previously defined important characteristics of the old product, the new product is defined as comparable and a minor quality change is regarded as price change. Otherwise, if a significant quality change is introduced, the new product is defined as not comparable. The breakage in price series is treated by the linking method. Explicit quality adjustments are usually not performed. Hedonic methods are being considered but not yet implemented. In some cases, where the product cycle is short and new versions with improved quality characteristics are frequently introduced, the overlap method may give biased estimates. Introduction of new products: New items are introduced when the market basket is updated. New products are introduced into the sample as they gain significant market share. Business and professional periodicles are closely followed to gain information on new products that are gaining consumer demand. Seasonal items: Missing prices for seasonal products are imputed. Certain procedures are in place to avoid too early reintroduction of seasonal products back to the index. For price changes a bridge method is used when the items are reintroduced to the collection. Index series are also calculated and released in seasonally adjusted form.; Index series starts in November 1985

  14. Israel IL: CPI: Local Source Base Year: Transport

    • ceicdata.com
    Updated Sep 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Israel IL: CPI: Local Source Base Year: Transport [Dataset]. https://www.ceicdata.com/en/israel/consumer-price-index-oecd-member-quarterly/il-cpi-local-source-base-year-transport
    Explore at:
    Dataset updated
    Sep 8, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2020 - Dec 1, 2022
    Area covered
    Israel
    Variables measured
    Consumer Prices
    Description

    Israel IL: Consumer Price Index (CPI): Local Source Base Year: Transport data was reported at 114.000 2020=100 in Dec 2022. This records a decrease from the previous number of 114.600 2020=100 for Sep 2022. Israel IL: Consumer Price Index (CPI): Local Source Base Year: Transport data is updated quarterly, averaging 93.883 2020=100 from Mar 1985 (Median) to Dec 2022, with 152 observations. The data reached an all-time high of 114.600 2020=100 in Sep 2022 and a record low of 6.700 2020=100 in Mar 1985. Israel IL: Consumer Price Index (CPI): Local Source Base Year: Transport data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Israel – Table IL.OECD.MEI: Consumer Price Index: COICOP 1999: OECD Member: Quarterly. The CPI measures the change in prices which consumer pay for fixed market basket of consumption goods and services. Price coverage: Prices include applicable taxes (VAT) and fees on the products at the time of sale. Cash payments are the basis for the price survey. Monthly installment payment and credit card interest are excluded. Price collection procedure: The data collection methods are adapted according to the specific characteristics of the CPI classes. The main price surveys are: Computer Assisted Telephone Interviews (CATI), conducted by the CBS staff at the central office; Computer Assisted Personal Interviews (CAPI) by field collectors with handheld personal computers (HPC) and Direct Data Entry (DDE) into the database. Also for some special items Internet is used either in parallel with CAPI or as a part of DDE collection. The CPI includes a measure of rented housing Owner Occupied Housing (OOH) is included in the CPI and is calculated using rental equivalent method. The method for imputation of OOH is based on stratified average prices of contracts that are subject to renewal. In order to reduce variance in the monthly series, two month moving averages are compared each month. However, the method for OOH still leaves room for quality differences to play role in month-to-month average price changes. The method relies on successful stratification of apartments to groups whose relative price changes are as similar as possible. While the stratification is based on apartment location and number of rooms, some quality characteristics may experience month-to-month variation. Treatment of own account production is not included Goods and services sold illegally, second hand goods, goods and services partially or totally subsidized by the government and financial transactions are not included. Insurance: Insurance of personal transport and Health insurance (private and provided by the Government) are included. Treatment of missing items: Price changes for missing observations are imputed based on the price movements of other observations of the same item. Selection of replacement items: Products that become permantely unavailable are replaced in the sample and enumerators select a replacement possessing as many of the same quality characteristics as possible. Prices from previous period are sought for the replacement item for linking purpose. Treatment of quality change: There are two types of replacement approach: comparable and non-comparable. If a new product possesses the previously defined important characteristics of the old product, the new product is defined as comparable and a minor quality change is regarded as price change. Otherwise, if a significant quality change is introduced, the new product is defined as not comparable. The breakage in price series is treated by the linking method. Explicit quality adjustments are usually not performed. Hedonic methods are being considered but not yet implemented. In some cases, where the product cycle is short and new versions with improved quality characteristics are frequently introduced, the overlap method may give biased estimates. Introduction of new products: New items are introduced when the market basket is updated. New products are introduced into the sample as they gain significant market share. Business and professional periodicles are closely followed to gain information on new products that are gaining consumer demand. Seasonal items: Missing prices for seasonal products are imputed. Certain procedures are in place to avoid too early reintroduction of seasonal products back to the index. For price changes a bridge method is used when the items are reintroduced to the collection. Index series are also calculated and released in seasonally adjusted form.; Index series starts in November 1985

  15. M

    CPI - Used Cars and Trucks | Data | 1953-2025

    • macrotrends.net
    csv
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). CPI - Used Cars and Trucks | Data | 1953-2025 [Dataset]. https://www.macrotrends.net/datasets/3028/cpi-used-cars-and-trucks
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1953 - 2025
    Area covered
    United States
    Description

    CPI - Used Cars and Trucks: 72 years of historical data from 1953 to 2025.

  16. US Inflation and Unemployment

    • console.cloud.google.com
    Updated Jul 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:U.S.%20Bureau%20of%20Labor%20Statistics&inv=1&invt=Ab1DWw (2018). US Inflation and Unemployment [Dataset]. https://console.cloud.google.com/marketplace/product/bls-public-data/cpi-unemployement
    Explore at:
    Dataset updated
    Jul 21, 2018
    Dataset provided by
    Googlehttp://google.com/
    Description

    This dataset includes economic statistics on inflation, prices, unemployment, and pay & benefits provided by the Bureau of Labor Statistics (BLS). This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  17. International Comparison of the Formula Effect Between the CPI and RPI

    • data.europa.eu
    • cloud.csiss.gmu.edu
    html
    Updated Oct 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). International Comparison of the Formula Effect Between the CPI and RPI [Dataset]. https://data.europa.eu/data/datasets/international_comparison_of_the_formula_effect_between_the_cpi_and_rpi
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 11, 2021
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    There are a number of differences between the Consumer Prices Index (CPI) and Retail Prices Index (RPI), including their coverage, population base, commodity measurement and methods of construction. Combined, these differences have meant that, for most of its history, the CPI has been lower than the RPI. One of the main reasons to this difference is the method of construction at the lowest level, where different formulae are used in the CPI and RPI to combine individual prices. This difference is usually referred to as the formula effect. This article will investigate similar formula effects present in the inflation measures of other countries, and where necessary will attempt to explain why the magnitude of the formula effect experienced by other countries differs from that of the UK.

    Source agency: Office for National Statistics

    Designation: National Statistics

    Language: English

    Alternative title: International Comparison

  18. g

    Modelling a Back Series for the Consumer Price Index | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Modelling a Back Series for the Consumer Price Index | gimi9.com [Dataset]. https://gimi9.com/dataset/uk_modelling_a_back_series_for_the_consumer_price_index/
    Explore at:
    Description

    The release includes an article which presents a method used to estimate a CPI series back to 1950. In addition the estimated series are provided at the all-items and two-digit CPI levels. Source agency: Office for National Statistics Designation: Supporting material Language: English Alternative title: Modelling a Back Series for the Consumer Price Index

  19. G

    Germany CPI: 2010=100: Motor Vehicles: Used Cars

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Germany CPI: 2010=100: Motor Vehicles: Used Cars [Dataset]. https://www.ceicdata.com/en/germany/consumer-price-index-by-special-groups-2010100/cpi-2010100-motor-vehicles-used-cars
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2018 - Dec 1, 2018
    Area covered
    Germany
    Variables measured
    Consumer Prices
    Description

    Germany Consumer Price Index (CPI): 2010=100: Motor Vehicles: Used Cars data was reported at 112.900 2010=100 in Dec 2018. This stayed constant from the previous number of 112.900 2010=100 for Nov 2018. Germany Consumer Price Index (CPI): 2010=100: Motor Vehicles: Used Cars data is updated monthly, averaging 99.850 2010=100 from Jan 2000 (Median) to Dec 2018, with 228 observations. The data reached an all-time high of 112.900 2010=100 in Dec 2018 and a record low of 92.600 2010=100 in Mar 2003. Germany Consumer Price Index (CPI): 2010=100: Motor Vehicles: Used Cars data remains active status in CEIC and is reported by Statistisches Bundesamt. The data is categorized under Global Database’s Germany – Table DE.I023: Consumer Price Index: by Special Groups: 2010=100. Rebased from 2010=100 to 2015=100 Replacement series ID: 412821117

  20. g

    World Bank - Consumer Price Indices

    • gimi9.com
    Updated Aug 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). World Bank - Consumer Price Indices [Dataset]. https://gimi9.com/dataset/worldbank_fao_cp/
    Explore at:
    Dataset updated
    Aug 18, 2020
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    🏳️‍🌈 International Organization English The FAOSTAT monthly Food CPI and General CPI database was based on the ILO CPI data until December 2014. In 2014, IMF-ILO-FAO agreed to transfer global CPI data compilation from ILO to IMF. Upon agreement, CPIs for all items and its sub components originates from the International Monetary Fund (IMF), and the UN Statistics Division(UNSD) for countries not covered by the IMF. However, due to a limited time coverage from IMF and UNSD for a number of countries, the Organisation for Economic Co-operation and Development (OECD), Central Bank of Western African States (BCEAO), Eastern Caribbean Central Bank (ECCB), UNdata, United Nations Conference on Trade and Development (UNCTAD) and national statistical office website data are used for missing historical data from IMF and UNSD food CPI. The FAO CPI dataset for all items(or general CPI) and the Food CPI, consists of a complete and consistent set of time series from January 2000 onwards. Data gaps on monthly Food CPI and General CPI are filled using statistical estimation procedures to have full data coverage for all countries for Food CPI and for General CPI. These indices measure the price change between the current and reference periods of the average basket of goods and services purchased by households. The General CPI is typically used to measure and monitor inflation, set monetary policy targets, index social benefits such as pensions and unemployment benefits, and to escalate thresholds and credits in the income tax systems and wages in public and private wage contracts. The FAOSTAT monthly Food CPI inflation rates are annual year-over-year inflation or percentage change over corresponding month of the previous year. The data included in Data360 is a subset of the data available from the source. Please refer to the source for complete data and methodology details. This collection includes only a subset of indicators from the source dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Labor Bureau of Labor Statistics (2024). Consumer Price Index (CPI) [Dataset]. https://datasets.ai/datasets/consumer-price-index-cpi-ee18b
Organization logo

Consumer Price Index (CPI)

Explore at:
0, 21Available download formats
Dataset updated
Sep 11, 2024
Dataset provided by
Bureau of Labor Statisticshttp://www.bls.gov/
Authors
U.S. Department of Labor Bureau of Labor Statistics
Description

The Consumer Price Index (CPI) is a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services. Indexes are available for the U.S. and various geographic areas. Average price data for select utility, automotive fuel, and food items are also available. Prices for the goods and services used to calculate the CPI are collected in 75 urban areas throughout the country and from about 23,000 retail and service establishments. Data on rents are collected from about 43,000 landlords or tenants.

More information and details about the data provided can be found at http://www.bls.gov/cpi

Search
Clear search
Close search
Google apps
Main menu