Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The tabular and visual dataset focuses on South African basic education and provides insights into the distribution of schools and basic population statistics across the country. This tabular and visual data are stratified across different quintiles for each provincial and district boundary. The quintile system is used by the South African government to classify schools based on their level of socio-economic disadvantage, with quintile 1 being the most disadvantaged and quintile 5 being the least disadvantaged. The data was joined by extracting information from the debarment of basic education with StatsSA population census data. Thereafter, all tabular data and geo located data were transformed to maps using GIS software and the Python integrated development environment. The dataset includes information on the number of schools and students in each quintile, as well as the population density in each area. The data is displayed through a combination of charts, maps and tables, allowing for easy analysis and interpretation of the information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in South Africa: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Contains data from the DHS data portal. There is also a dataset containing South Africa - National Demographic and Health Data on HDX.
The DHS Program Application Programming Interface (API) provides software developers access to aggregated indicator data from The Demographic and Health Surveys (DHS) Program. The API can be used to create various applications to help analyze, visualize, explore and disseminate data on population, health, HIV, and nutrition from more than 90 countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
As of 2022, South Africa's population increased and counted approximately 60.6 million inhabitants in total, of which the majority (roughly 49.1 million) were Black Africans. Individuals with an Indian or Asian background formed the smallest population group, counting approximately 1.56 million people overall. Looking at the population from a regional perspective, Gauteng (includes Johannesburg) is the smallest province of South Africa, though highly urbanized with a population of nearly 16 million people.
Increase in number of households
The total number of households increased annually between 2002 and 2022. Between this period, the number of households in South Africa grew by approximately 65 percent. Furthermore, households comprising two to three members were more common in urban areas (39.2 percent) than they were in rural areas (30.6 percent). Households with six or more people, on the other hand, amounted to 19.3 percent in rural areas, being roughly twice as common as those in urban areas.
Main sources of income
The majority of the households in South Africa had salaries or grants as a main source of income in 2019. Roughly 10.7 million drew their income from regular wages, whereas 7.9 million households received social grants paid by the government for citizens in need of state support.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1980 South African Population Census was a count of all persons present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980). The purpose of the population census was to collect, process and disseminate detailed statistics on population size, composition and distribution at small area level. The 1980 South African Population Census contains data collected on HOUSEHOLDS: household goods and dwelling characteristics as well as employment of domestic workers; INDIVIDUALS: population group, citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
As of 2024, South Africa's population increased, counting approximately 63 million inhabitants. Of these, roughly 27.5 million were aged 0-24, while 654,000 people were 80 years or older. Gauteng and Cape Town are the most populated Although South Africa’s yearly population growth has been dropping since 2013, the growth rate still stood above the world average in 2021. That year, the global population increase reached 0.94 percent, while for South Africa, the rise was 1.23 percent. The majority of the people lived in the borders of Gauteng, the smallest of the nine provinces in land area. The number of people residing there amounted to 15.9 million in 2021. Although Western Cape was the third-largest province, one of it cities, Cape Town, had the highest number of inhabitants in the country, at 3.4 million. An underemployed younger population South Africa has a large population under 14, who will be looking for job opportunities in the future. However, the country's labor market has had difficulty integrating these youngsters. Specifically, as of the third quarter of 2022, the unemployment rate reached close to 60 percent and 42.9 percent among people aged 15-24 and 25-34 years, respectively. In the same period, some 25 percent of the individuals between 15 and 24 years were economically active, while the labor force participation rate was higher among people aged 25 to 34, at 71.2 percent.
As of 2023, South Africa's population increased and counted approximately 62.3 million inhabitants in total, of which the majority inhabited Gauteng, KwaZulu-Natal, and the Western-Eastern Cape. Gauteng (includes Johannesburg) is the smallest province in South Africa, though highly urbanized with a population of over 16 million people according to the estimates. Cape Town, on the other hand, is the largest city in South Africa with nearly 3.43 million inhabitants in the same year, whereas Durban counted 3.12 million citizens. However, looking at cities including municipalities, Johannesburg ranks first. High rate of young population South Africa has a substantial population of young people. In 2024, approximately 34.3 percent of the people were aged 19 years or younger. Those aged 60 or older, on the other hand, made-up over 10 percent of the total population. Distributing South African citizens by marital status, approximately half of the males and females were classified as single in 2021. Furthermore, 29.1 percent of the men were registered as married, whereas nearly 27 percent of the women walked down the aisle. Youth unemployment Youth unemployment fluctuated heavily between 2003 and 2022. In 2003, the unemployment rate stood at 36 percent, followed by a significant increase to 45.5 percent in 2010. However, it fluctuated again and as of 2022, over 51 percent of the youth were registered as unemployed. Furthermore, based on a survey conducted on the worries of South Africans, some 64 percent reported being worried about employment and the job market situation.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
South Africa administrative levels 0 (country), 1 (province), 2 (district), and 3 (local municipality) population statistics.
REFERENCE YEAR: 2016
These CSV files are suitable for database or GIS linkage to the South Africa - Subnational Administrative Boundaries shapefiles.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa ZA: Death Rate: Crude: per 1000 People data was reported at 9.793 Ratio in 2016. This records a decrease from the previous number of 10.102 Ratio for 2015. South Africa ZA: Death Rate: Crude: per 1000 People data is updated yearly, averaging 11.455 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 14.815 Ratio in 1960 and a record low of 8.199 Ratio in 1991. South Africa ZA: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
The 1985 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
The 1985 Census dataset contains 9 data files. These refer to Development Regions demarcated by the South African Government according to their socio-economic conditions and development needs. These Development Regions are labeled A to J (there is no Region I, presumably because Statistics SA felt an "I" could be confused with the number 1). The 9 data files in the 1985 Census dataset refer to the following areas:
DEV REGION AREA COVERED A Western Cape Province including Walvis Bay B Northern Cape C Orange Free State and Qwaqwa D Eastern Cape/Border E Natal and Kwazulu F Eastern Transvaal, KaNgwane and part of the Simdlangentsha district of Kwazulu G Northern Transvaal, Lebowa and Gazankulu H PWV area, Moutse and KwaNdebele J Western Transvaal
The units of analysis under observation in the South African census 1985 are households and individuals
The South African census 1985 census covered the provinces of the Cape, the Orange Free State, Transvaal, and Nata and the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
Census/enumeration data [cen]
Although the census was meant to cover all residents of the so called white areas of South Africa, in 88 areas door-to-door surveys were not possible and the population in these areas was enumerated by means of a sample survey conducted by the Human Sciences Research Council.
Face-to-face [f2f]
The1985 population census questionnaire was administered to each household and collected information on household and area type, and information on household members, including relationship within household, sex, age, marital status, population group, birthplace, country of citizenship, level of education, occupation, identity of employer and the nature of economic activities
UNDER-ENUMERATION:
The following under-enumeration figures have been calculated for the 1985 census.
Estimated percentage distribution of undercount by race according to the HSRC:
Percent undercount
Whites 7.6%
Blacks in the “RSA” 20.4%
Blacks in the “National States” 15.1%
Coloureds 1.0%
Asians 4.6%
South Africa administrative levels 0 (country), 1 (province), 2 (district), and 3 (local municipality) population statistics.
These CSV files are suitable for database or GIS linkage to the South Africa administrative levels 0-4 boundaries shapefiles.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Improving health is central to the Millennium Development Goals, and the public sector is the main provider of health care in developing countries. To reduce inequities, many countries have emphasized primary health care, including immunization, sanitation, access to safe drinking water, and safe motherhood initiatives. Data here cover health systems, disease prevention, reproductive health, nutrition, and population dynamics. Data are from the United Nations Population Division, World Health Organization, United Nations Children's Fund, the Joint United Nations Programme on HIV/AIDS, and various other sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa ZA: Educational Attainment: At Least Bachelor's or Equivalent: Population 25+ Years: Female: % Cumulative data was reported at 5.716 % in 2015. South Africa ZA: Educational Attainment: At Least Bachelor's or Equivalent: Population 25+ Years: Female: % Cumulative data is updated yearly, averaging 5.716 % from Dec 2015 (Median) to 2015, with 1 observations. South Africa ZA: Educational Attainment: At Least Bachelor's or Equivalent: Population 25+ Years: Female: % Cumulative data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank: Education Statistics. The percentage of population ages 25 and over that attained or completed Bachelor's or equivalent.; ; UNESCO Institute for Statistics; ;
DATASET: Alpha version 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/). REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. DATE OF PRODUCTION: January 2013
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa ZA: Population: Growth data was reported at 1.245 % in 2017. This records a decrease from the previous number of 1.301 % for 2016. South Africa ZA: Population: Growth data is updated yearly, averaging 2.282 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 2.794 % in 1972 and a record low of 1.047 % in 2008. South Africa ZA: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Censuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation.The census plays an essential role in public administration. The results are used to ensure: • equity in distribution of government services • distributing and allocating government funds among various regions and districts for education and health services • delineating electoral districts at national and local levels, and • measuring the impact of industrial development, to name a few The census also provides the benchmark for all surveys conducted by the national statistical office. Without the sampling frame derived from the census, the national statistical system would face difficulties in providing reliable official statistics for use by government and the public. Census also provides information on small areas and population groups with minimum sampling errors. This is important, for example, in planning the location of a school or clinic. Census information is also invaluable for use in the private sector for activities such as business planning and market analyses. The information is used as a benchmark in research and analysis.
Census 2011 was the third democratic census to be conducted in South Africa. Census 2011 specific objectives included: - To provide statistics on population, demographic, social, economic and housing characteristics; - To provide a base for the selection of a new sampling frame; - To provide data at lowest geographical level; and - To provide a primary base for the mid-year projections.
National
Households, Individuals
Census/enumeration data [cen]
Face-to-face [f2f]
About the Questionnaire : Much emphasis has been placed on the need for a population census to help government direct its development programmes, but less has been written about how the census questionnaire is compiled. The main focus of a population and housing census is to take stock and produce a total count of the population without omission or duplication. Another major focus is to be able to provide accurate demographic and socio-economic characteristics pertaining to each individual enumerated. Apart from individuals, the focus is on collecting accurate data on housing characteristics and services.A population and housing census provides data needed to facilitate informed decision-making as far as policy formulation and implementation are concerned, as well as to monitor and evaluate their programmes at the smallest area level possible. It is therefore important that Statistics South Africa collects statistical data that comply with the United Nations recommendations and other relevant stakeholder needs.
The United Nations underscores the following factors in determining the selection of topics to be investigated in population censuses: a) The needs of a broad range of data users in the country; b) Achievement of the maximum degree of international comparability, both within regions and on a worldwide basis; c) The probable willingness and ability of the public to give adequate information on the topics; and d) The total national resources available for conducting a census.
In addition, the UN stipulates that census-takers should avoid collecting information that is no longer required simply because it was traditionally collected in the past, but rather focus on key demographic, social and socio-economic variables.It becomes necessary, therefore, in consultation with a broad range of users of census data, to review periodically the topics traditionally investigated and to re-evaluate the need for the series to which they contribute, particularly in the light of new data needs and alternative data sources that may have become available for investigating topics formerly covered in the population census. It was against this background that Statistics South Africa conducted user consultations in 2008 after the release of some of the Community Survey products. However, some groundwork in relation to core questions recommended by all countries in Africa has been done. In line with users' meetings, the crucial demands of the Millennium Development Goals (MDGs) should also be met. It is also imperative that Stats SA meet the demands of the users that require small area data.
Accuracy of data depends on a well-designed questionnaire that is short and to the point. The interview to complete the questionnaire should not take longer than 18 minutes per household. Accuracy also depends on the diligence of the enumerator and honesty of the respondent.On the other hand, disadvantaged populations, owing to their small numbers, are best covered in the census and not in household sample surveys.Variables such as employment/unemployment, religion, income, and language are more accurately covered in household surveys than in censuses.Users'/stakeholders' input in terms of providing information in the planning phase of the census is crucial in making it a success. However, the information provided should be within the scope of the census.
Individual particulars Section A: Demographics Section B: Migration Section C: General Health and Functioning Section D: Parental Survival and Income Section E: Education Section F: Employment Section G: Fertility (Women 12-50 Years Listed) Section H: Housing, Household Goods and Services and Agricultural Activities Section I: Mortality in the Last 12 Months The Household Questionnaire is available in Afrikaans; English; isiZulu; IsiNdebele; Sepedi; SeSotho; SiSwati;Tshivenda;Xitsonga
The Transient and Tourist Hotel Questionnaire (English) is divided into the following sections:
Name, Age, Gender, Date of Birth, Marital Status, Population Group, Country of birth, Citizenship, Province.
The Questionnaire for Institutions (English) is divided into the following sections:
Particulars of the institution
Availability of piped water for the institution
Main source of water for domestic use
Main type of toilet facility
Type of energy/fuel used for cooking, heating and lighting at the institution
Disposal of refuse or rubbish
Asset ownership (TV, Radio, Landline telephone, Refrigerator, Internet facilities)
List of persons in the institution on census night (name, date of birth, sex, population group, marital status, barcode number)
The Post Enumeration Survey Questionnaire (English)
These questionnaires are provided as external resources.
Data editing and validation system The execution of each phase of Census operations introduces some form of errors in Census data. Despite quality assurance methodologies embedded in all the phases; data collection, data capturing (both manual and automated), coding, and editing, a number of errors creep in and distort the collected information. To promote consistency and improve on data quality, editing is a paramount phase in identifying and minimising errors such as invalid values, inconsistent entries or unknown/missing values. The editing process for Census 2011 was based on defined rules (specifications).
The editing of Census 2011 data involved a number of sequential processes: selection of members of the editing team, review of Census 2001 and 2007 Community Survey editing specifications, development of editing specifications for the Census 2011 pre-tests (2009 pilot and 2010 Dress Rehearsal), development of firewall editing specifications and finalisation of specifications for the main Census.
Editing team The Census 2011 editing team was drawn from various divisions of the organisation based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors. Census 2011 editing team was drawn from various divisions of the organization based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors.
The Census 2011 questionnaire was very complex, characterised by many sections, interlinked questions and skipping instructions. Editing of such complex, interlinked data items required application of a combination of editing techniques. Errors relating to structure were resolved using structural query language (SQL) in Oracle dataset. CSPro software was used to resolve content related errors. The strategy used for Census 2011 data editing was implementation of automated error detection and correction with minimal changes. Combinations of logical and dynamic imputation/editing were used. Logical imputations were preferred, and in many cases substantial effort was undertaken to deduce a consistent value based on the rest of the household’s information. To profile the extent of changes in the dataset and assess the effects of imputation, a set of imputation flags are included in the edited dataset. Imputation flags values include the following: 0 no imputation was performed; raw data were preserved 1 Logical editing was performed, raw data were blank 2 logical editing was performed, raw data were not blank 3 hot-deck imputation was performed, raw data were blank 4 hot-deck imputation was performed, raw data were not blank
Independent monitoring and evaluation of Census field activities Independent monitoring of the Census 2011 field activities was carried out by a team of 31 professionals and 381 Monitoring
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The tabular and visual dataset focuses on South African basic education and provides insights into the distribution of schools and basic population statistics across the country. This tabular and visual data are stratified across different quintiles for each provincial and district boundary. The quintile system is used by the South African government to classify schools based on their level of socio-economic disadvantage, with quintile 1 being the most disadvantaged and quintile 5 being the least disadvantaged. The data was joined by extracting information from the debarment of basic education with StatsSA population census data. Thereafter, all tabular data and geo located data were transformed to maps using GIS software and the Python integrated development environment. The dataset includes information on the number of schools and students in each quintile, as well as the population density in each area. The data is displayed through a combination of charts, maps and tables, allowing for easy analysis and interpretation of the information.