Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Facebook
TwitterThis data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
Facebook
TwitterDataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Literature review dataset
This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.
This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.
The reference to cite the related paper is the following:
Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y
To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterIntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Learning GIS using open source software : an applied guide for geo-spatial analysis. It features 7 columns including author, publication date, language, and book publisher.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains comprehensive geospatial data detailing the geographical features and boundaries of India. It includes information on various geographic elements such as terrain, water bodies, administrative boundaries, and infrastructure, providing valuable insights for spatial analysis and mapping projects.
Facebook
TwitterSpatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 3.0 protection status (by GAP Status Code) and public access status for various land unit boundaries (Protected Areas Database of the United States 3.0 Vector Analysis and Summary Statistics). Summary statistics are also available to explore and download (Comma-separated Table [CSV], Microsoft Excel Workbook (.xlsx), Portable Document Format [.pdf] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster GIS analysis files are also available for combination with other raster data (Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis). The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full inventory, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class (Protected Areas Database of the United States (PAD-US) 3.0, https://doi.org/10.5066/P9Q9LQ4B), was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.
Facebook
TwitterThe establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.
Facebook
TwitterSpatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 2.1 protection status for various land unit boundaries (Protected Areas Database of the United States (PAD-US) Summary Statistics by GAP Status Code) as well as summaries of public access status (Public Access Statistics), provided in Microsoft Excel readable workbooks, the vector GIS analysis files and scripts used to complete the summaries, and raster GIS analysis files for combination with other raster data. The PAD-US 2.1 Combined Fee, Designation, Easement feature class in the full inventory (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.
Facebook
TwitterData set that contains information on archaeological remains of the pre historic settlement of the Letolo valley on Savaii on Samoa. It is built in ArcMap from ESRI and is based on previously unpublished surveys made by the Peace Corps Volonteer Gregory Jackmond in 1976-78, and in a lesser degree on excavations made by Helene Martinsson Wallin and Paul Wallin. The settlement was in use from at least 1000 AD to about 1700- 1800. Since abandonment it has been covered by thick jungle. However by the time of the survey by Jackmond (1976-78) it was grazed by cattle and the remains was visible. The survey is at file at Auckland War Memorial Museum and has hitherto been unpublished. A copy of the survey has been accessed by Olof Håkansson through Martinsson Wallin and Wallin and as part of a Masters Thesis in Archeology at Uppsala University it has been digitised.
Olof Håkansson has built the data base structure in the software from ESRI, and digitised the data in 2015 to 2017. One of the aims of the Masters Thesis was to discuss hierarchies. To do this, subsets of the data have been displayed in various ways on maps. Another aim was to discuss archaeological methodology when working with spatial data, but the data in itself can be used without regard to the questions asked in the Masters Thesis. All data that was unclear has been removed in an effort to avoid errors being introduced. Even so, if there is mistakes in the data set it is to be blamed on the researcher, Olof Håkansson. A more comprehensive account of the aim, questions, purpose, method, as well the results of the research, is to be found in the Masters Thesis itself. Direkt link http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1149265&dswid=9472
Purpose:
The purpose is to examine hierarchies in prehistoric Samoa. The purpose is further to make the produced data sets available for study.
Prehistoric remains of the settlement of Letolo on the Island of Savaii in Samoa in Polynesia
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesXinjiang is one of the high TB burden provinces of China. A spatial analysis was conducted using geographical information system (GIS) technology to improve the understanding of geographic variation of the pulmonary TB occurrence in Xinjiang, its predictors, and to search for targeted interventions.MethodsNumbers of reported pulmonary TB cases were collected at county/district level from TB surveillance system database. Population data were extracted from Xinjiang Statistical Yearbook (2006~2014). Spatial autocorrelation (or dependency) was assessed using global Moran’s I statistic. Anselin’s local Moran’s I and local Getis-Ord statistics were used to detect local spatial clusters. Ordinary least squares (OLS) regression, spatial lag model (SLM) and geographically-weighted regression (GWR) models were used to explore the socio-demographic predictors of pulmonary TB incidence from global and local perspectives. SPSS17.0, ArcGIS10.2.2, and GeoDA software were used for data analysis.ResultsIncidence of sputum smear positive (SS+) TB and new SS+TB showed a declining trend from 2005 to 2013. Pulmonary TB incidence showed a declining trend from 2005 to 2010 and a rising trend since 2011 mainly caused by the rising trend of sputum smear negative (SS-) TB incidence (p
Facebook
TwitterMassive 3.5M+ POI database providing multi-industry places data across the US and Canada. Includes automotive, retail, dining, healthcare, education, and more. Built for GIS developers, mapping platforms, and analysts conducting market research, spatial analysis, and location intelligence.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset used for the research presented in the following paper: Takayuki Hiraoka, Takashi Kirimura, Naoya Fujiwara (2024) "Geospatial analysis of toponyms in geo-tagged social media posts".
We collected georeferenced Twitter posts tagged to coordinates inside the bounding box of Japan between 2012-2018. The present dataset represents the spatial distributions of all geotagged posts as well as posts containing in the text each of 24 domestic toponyms, 12 common nouns, and 6 foreign toponyms. The code used to analyze the data is available on GitHub.
selected_geotagged_tweet_data/: Number of geotagged twitter posts in each grid cell. Each csv file under this directory associates each grid cell (spanning 30 seconds of latitude and 45 secoonds of longitude, which is approximately a 1km x 1km square, specified by an 8 digit code m3code) with the number of geotagged tweets tagged to the coordinates inside that cell (tweetcount). file_names.json relates each of the toponyms studied in this work to the corresponding datafile (all denotes the full data). population/population_center_2020.xlsx: Center of population of each municipality based on the 2020 census. Derived from data published by the Statistics Bureau of Japan on their website (Japanese)population/census2015mesh3_totalpop_setai.csv: Resident population in each grid cell based on the 2015 census. Derived from data published by the Statistics Bureau of Japan on e-stat (Japanese)population/economiccensus2016mesh3_jigyosyo_jugyosya.csv: Employed population in each grid cell based on the 2016 Economic Census. Derived from data published by the Statistics Bureau of Japan on e-stat (Japanese)japan_MetropolitanEmploymentArea2015map/: Shape file for the boundaries of Metropolitan Employment Areas (MEA) in Japan. See this website for details of MEA.ward_shapefiles/: Shape files for the boundaries of wards in large cities, published by the Statistics Bureau of Japan on e-stat
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Southwestern Region is 20.6 million acres. There are six national forests in Arizona, five national forests and a national grassland in New Mexico, and one national grassland each in Oklahoma and the Texas panhandle.The region ranges in elevation from 1,600 feet above sea level and an annual rain fall of 8 inches in Arizona's lower Sonoran Desert to 13,171-foot high Wheeler Peak and over 35 inches of precipitation a year in northern New Mexico. Geographic Information Systems or GIS are computer systems, software and data used to analyze and display spatial or locational data about surface features. One of the strengths of GIS is the capability to overlay or compare multiple feature layers. A user can then analyze the relationship between the layers. Data, reports and maps produced through GIS are used by managers and resource specialists to make decisions about land management activities on National Forests. The National Forests of the Southwestern Region maintain and utilize GIS data for various features on the ground. Some of these datasets are made available for download through this page. Resources in this dataset:Resource Title: GIS Datasets. File Name: Web Page, url: https://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=STELPRDB5202474 Selected GIS datasets for the Southwestern Region are available for download from this page.Resource Software Recommended: ArcExplorer,url: http://www.esri.com/software/arcexplorer/index.html
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this seminar, you will learn about the spatial analysis tools built directly into the ArcGIS.com map viewer. You will learn of the spatial analysis capabilities in ArcGIS Online for Organizations, whether for analyzing your own data, data that's publicly available on ArcGIS Online, or a combination of both. You will learn the overall features and benefits of ArcGIS Online Analysis, how to get started, and how to choose the right approach in order to solve a specific spatial problem.
Facebook
TwitterUnlock precise, high-quality GIS data covering 164M+ verified locations across 220+ countries. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This spatial dataset is quantifying soil organic carbon (SOC) and total nitrogen (TN) storage with their carbon to nitrogen ratio (C/N) in soils of the northern circumpolar permafrost region (17.9 × 10⁶ km²) based on ESA’s Climate Change Initiative (CCI) Global Land Cover dataset at 300 m pixel resolution.
The dataset contains GIS grids of the northern circumpolar permafrost region for SOC, TN and C/N ratio for the following depth increments (0 – 30, 0 – 50, 0 – 100, 100 – 200, 200 – 300, 0 – 300 cm). These GIS grids are based on 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region.
Additional metadata with the actual pedon and profile data is available as a companion dataset.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Matthias Siewert, Niels Weiss, Gustaf Hugelius (2022) A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region. Dataset version 1. Bolin Centre Database. https://doi.org/10.17043/palmtag-2022-spatial-1
The dataset contains 18 GIS grids of the northern circumpolar permafrost region; one grid for each of the three variables SOC, TN and C/N ratio for each of the following six depth increments (0 – 30, 0 – 50, 0 – 100, 100 – 200, 200 – 300, 0 – 300 cm).
There GIS grids are provided as tif, tfw and xml files. Total uncompressed file size: 10 GB. A compressed (zip) file is available for download. Compressed file size: 141.5 MB.
The used permafrost region dataset stretches over 17.9 × 10⁶ km² of the Northern Hemisphere, and is based on equilibrium state model for the temperature at the top of the permafrost (TTOP) for the 2000 – 2016 period (Obu et al. 2019).
Detailed pedon data on soil carbon and nitrogen for the northern permafrost region, based on 6529 analyzed samples from 651 soil pedons in 16 different sampling locations, is available as a companion dataset.
The GIS dataset is based on the companion dataset and is part of a publication.
All profiles were assigned to land cover class based on field descriptions. The main aim of the field studies compiled in the companion dataset was to perform SOC/TN pool inventories of each study area considering different land cover types, geomorphological landforms and soil properties.
For the upscaling, we used the land cover map from the Global ESA Land cover Climate Change Initiative (CCI) project at 300 m spatial resolution, retrieved from the ESA Climate Change Initiative Land Cover visualization interface.
We thank the ESA CCI Land Cover project for providing their data, which was used for upscaling our product to circumpolar scale.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.