97 datasets found
  1. d

    GIS database

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Win, Nang Tin (2023). GIS database [Dataset]. http://doi.org/10.7910/DVN/TV7J27
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Win, Nang Tin
    Time period covered
    Oct 1, 2020 - Sep 30, 2022
    Description

    It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

  2. M

    DNRGPS

    • gisdata.mn.gov
    • data.wu.ac.at
    windows_app
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps
    Explore at:
    windows_appAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset provided by
    Natural Resources Department
    Description

    DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

    DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

    DNRGPS does not require installation. Simply run the application .exe

    See the DNRGPS application documentation for more details.

    Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

    Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

    Prerequisite: .NET 4 Framework

    DNR Data and Software License Agreement

    Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

  3. Davis Station Fire Hydrants and Fire Hoses GIS Dataset

    • data.aad.gov.au
    • researchdata.edu.au
    Updated Feb 17, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BOYLE, MARTIN (2003). Davis Station Fire Hydrants and Fire Hoses GIS Dataset [Dataset]. https://data.aad.gov.au/metadata/gis103
    Explore at:
    Dataset updated
    Feb 17, 2003
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    BOYLE, MARTIN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 1999 - Jun 30, 2013
    Area covered
    Description

    This GIS dataset shows the locations of fire hydrants at Davis Station. The data are formatted according to the SCAR Feature Catalogue (see Related URL). Data quality information for each feature is located in the attribute table.

  4. a

    Service Locations

    • hub.arcgis.com
    • gisdata-apexnc.opendata.arcgis.com
    Updated Jan 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Apex, North Carolina (2025). Service Locations [Dataset]. https://hub.arcgis.com/datasets/apexnc::electric-dataset?layer=1&uiVersion=content-views
    Explore at:
    Dataset updated
    Jan 5, 2025
    Dataset authored and provided by
    Town of Apex, North Carolina
    Area covered
    Description

    The construction of this data model was adapted from the Telvent Miner & Miner ArcFM MultiSpeak data model to provide interface functionality with Milsoft Utility Solutions WindMil engineering analysis program. Database adaptations, GPS data collection, and all subsequent GIS processes were performed by Southern Geospatial Services for the Town of Apex Electric Utilities Division in accordance to the agreement set forth in the document "Town of Apex Electric Utilities GIS/GPS Project Proposal" dated March 10, 2008. Southern Geospatial Services disclaims all warranties with respect to data contained herein. Questions regarding data quality and accuracy should be directed to persons knowledgeable with the forementioned agreement.The data in this GIS with creation dates between March of 2008 and April of 2024 were generated by Southern Geospatial Services, PLLC (SGS). The original inventory was performed under the above detailed agreement with the Town of Apex (TOA). Following the original inventory, SGS performed maintenance projects to incorporate infrastructure expansion and modification into the GIS via annual service agreements with TOA. These maintenances continued through April of 2024.At the request of TOA, TOA initiated in house maintenance of the GIS following delivery of the final SGS maintenance project in April of 2024. GIS data created or modified after April of 2024 are not the product of SGS.With respect to SGS generated GIS data that are point features:GPS data collected after January 1, 2013 were surveyed using mapping grade or survey grade GPS equipment with real time differential correction undertaken via the NC Geodetic Surveys Real Time Network (VRS). GPS data collected prior to January 1, 2013 were surveyed using mapping grade GPS equipment without the use of VRS, with differential correction performed via post processing.With respect to SGS generated GIS data that are line features:Line data in the GIS for overhead conductors were digitized as straight lines between surveyed poles. Line data in the GIS for underground conductors were digitized between surveyed at grade electric utility equipment. The configurations and positions of the underground conductors are based on TOA provided plans. The underground conductors are diagrammatic and cannot be relied upon for the determination of the actual physical locations of underground conductors in the field.The Service Locations feature class was created by Southern Geospatial Services (SGS) from a shapefile of customer service locations generated by dataVoice International (DV) as part of their agreement with the Town of Apex (TOA) regarding the development and implemention of an Outage Management System (OMS).Point features in this feature class represent service locations (consumers of TOA electric services) by uniquely identifying the features with the same unique identifier as generated for a given service location in the TOA Customer Information System (CIS). This is also the mechanism by which the features are tied to the OMS. Features are physically located in the GIS based on CIS address in comparison to address information found in Wake County GIS property data (parcel data). Features are tied to the GIS electric connectivity model by identifying the parent feature (Upline Element) as the transformer that feeds a given service location.SGS was provided a shapefile of 17992 features from DV. Error potentially exists in this DV generated data for the service location features in terms of their assigned physical location, phase, and parent element.Regarding the physical location of the features, SGS had no part in physically locating the 17992 features as provided by DV and cannot ascertain the accuracy of the locations of the features without undertaking an analysis designed to verify or correct for error if it exists. SGS constructed the feature class and loaded the shapefile objects into the feature class and thus the features exist in the DV derived location. SGS understands that DV situated the features based on the address as found in the CIS. No features were verified as to the accuracy of their physical location when the data were originally loaded. It is the assumption of SGS that the locations of the vast majority of the service location features as provided by DV are in fact correct.SGS understands that as a general rule that DV situated residential features (individually or grouped) in the center of a parcel. SGS understands that for areas where multiple features may exist in a given parcel (such as commercial properties and mobile home parks) that DV situated features as either grouped in the center of the parcel or situated over buildings, structures, or other features identifiable in air photos. It appears that some features are also grouped in roads or other non addressed locations, likely near areas where they should physically be located, but that these features were not located in a final manner and are either grouped or strung out in a row in the general area of where DV may have expected they should exist.Regarding the parent and phase of the features, the potential for error is due to the "first order approximation" protocol employed by DV for assigning the attributes. With the features located as detailed above, SGS understands that DV identified the transformer closest to the service location (straight line distance) as its parent. Phase was assigned to the service location feature based on the phase of the parent transformer. SGS expects that this protocol correctly assigned parent (and phase) to a significant portion of the features, however this protocol will also obviously incorretly assign parent in many instances.To accurately identify parent for all 17992 service locations would require a significant GIS and field based project. SGS is willing to undertake a project of this magnitude at the discretion of TOA. In the meantime, SGS is maintaining (editing and adding to) this feature class as part of the ongoing GIS maintenance agreement that is in place between TOA and SGS. In lieu of a project designed to quality assess and correct for the data provided by DV, SGS will verify the locations of the features at the request of TOA via comparison of the unique identifier for a service location to the CIS address and Wake County parcel data address as issues arise with the OMS if SGS is directed to focus on select areas for verification by TOA. Additionally, as SGS adds features to this feature class, if error related to the phase and parent of an adjacent feature is uncovered during a maintenance, it will be corrected for as part of that maintenance.With respect to the additon of features moving forward, TOA will provide SGS with an export of CIS records for each SGS maintenance, SGS will tie new accounts to a physical location based on address, SGS will create a feature for the CIS account record in this feature class at the center of a parcel for a residential address or at the center of a parcel or over the correct (or approximately correct) location as determined via air photos or via TOA plans for commercial or other relevant areas, SGS will identify the parent of the service location as the actual transformer that feeds the service location, and SGS will identify the phase of the service address as the phase of it's parent.Service locations with an ObjectID of 1 through 17992 were originally physically located and attributed by DV.Service locations with an ObjectID of 17993 or higher were originally physically located and attributed by SGS.DV originated data are provided the Creation User attribute of DV, however if SGS has edited or verified any aspect of the feature, this attribute will be changed to SGS and a comment related to the edits will be provided in the SGS Edits Comments data field. SGS originated features will be provided the Creation User attribute of SGS. Reference the SGS Edits Comments attribute field Metadata for further information.

  5. Open Source GIS Training for Improved Protected Area Planning and Management...

    • rmi-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Republic of the Marshall Islands [Dataset]. https://rmi-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-republic-marshall
    Explore at:
    pdf(5213196), pdf(1167275), zip(151511128), pdf(3658659)Available download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Marshall Islands, POLYGON ((159.92660522461 3.4531078732957, 159.92660522461 16.662506225635, 176.18637084961 3.4531078732957)), 176.18637084961 16.662506225635
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on August 17-21, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  6. d

    GPS Telemetry and other data sets of Florida manatees from Crystal River, FL...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Sep 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). GPS Telemetry and other data sets of Florida manatees from Crystal River, FL 2006-2018 [Dataset]. https://catalog.data.gov/dataset/gps-telemetry-and-other-data-sets-of-florida-manatees-from-crystal-river-fl-2006-2018
    Explore at:
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Crystal River, Florida
    Description

    These data represent 1) Telemetry from Florida manatee from Crystal River, FL 2006-2018 2) Observations of manatees, swimmers and paddlecraft from Three Sisters Springs, Crystal River, FL 2014-2017 3) GIS polygons of aquatic landscape features from Crystal River, FL.

  7. Casey Station Fire Hydrants GIS Dataset

    • data.aad.gov.au
    • researchdata.edu.au
    Updated Feb 2, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HARRIS, URSULA (2010). Casey Station Fire Hydrants GIS Dataset [Dataset]. https://data.aad.gov.au/metadata/gis20
    Explore at:
    Dataset updated
    Feb 2, 2010
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    HARRIS, URSULA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 1999 - Sep 1, 2000
    Area covered
    Description

    This GIS dataset shows the locations of fire hydrants at Casey Station. The data are formatted according to the SCAR Feature Catalogue (see Related URL). Data quality information for each feature is located in the attribute table.

  8. c

    ds2903 GIS Dataset

    • map.dfg.ca.gov
    Updated Dec 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ds2903 GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds2903.html
    Explore at:
    Dataset updated
    Dec 9, 2022
    Description

    CDFW BIOS GIS Dataset, Contact: Erin Zulliger, Description: Migration corridor, stopover, and winter range locations for Rocky Mountain elk (Cervus canadensis nelsoni) from the East Shasta Valley herd, Siskiyou County, California, and Klamath County, Oregon. Corridors, stopovers, and winter ranges were developed in Migration Mapper with Brownian Bridge Movement Models using GPS locations from collared elk. Migration corridors represent movement routes used by elk between winter and summer range habitats.

  9. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • samoa-data.sprep.org
    pdf, zip
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in Samoa [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-samoa
    Explore at:
    pdf(1016525), zip, pdf(3655929), pdf(4922394)Available download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    188.90562057495 -14.517952072974)), 188.90562057495 -13.120440826626, POLYGON ((186.75230026245 -14.517952072974, 186.75230026245 -13.120440826626, Samoa
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from workshops that were conducted on February 19-21 and October 6-7, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  10. Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes [Dataset]. https://catalog.data.gov/dataset/charles-m-russell-national-wildlife-refuge-fire-history-gis-feature-classes
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    Summary This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Records from FMIS (Fire Management Information System) were reviewed and compared to refuge records. Polygon data in FMIS only occurs from 2012 to current and many acreage estimates did not match. This dataset includes ALL fires no matter the size. This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Data origins include: Data origins include: 1) GPS Polygon-data (Best), 2) GPS Lat/Long or UTM, 3)TRS QS, 4)TRS Point, 6)Hand digitized from topo map, 7) Circle buffer, 8)Screen digitized, 9) FMIS Lat/Long. Started compiling fire history of CMR in 2007. This has been a 10 year process.FMIS doesn't include fires polygons that are less than 10 acres. This dataset has been sent to FMIS for FMIS records to be updated with correct information. The spreadsheet contains 10-15 records without spatial information and weren't included in either feature class. Fire information from 1964 - 1980 came from records Larry Eichhorn, BLM, provided to CMR staff. Mike Granger, CMR Fire Management Officer, tracked fires on an 11x17 legal pad and all this information was brought into Excel and ArcGIS. Frequently, other information about the fires were missing which made it difficult to back track and fill in missing data. Time was spent verifiying locations that were occasionally recorded incorrectly (DMS vs DD) and converting TRS into Lat/Long and/or UTM. CMR is divided into 2 different UTM zones, zone 12 and zone 13. This occasionally caused errors in projecting. Naming conventions caused confusion. Fires are frequently names by location and there are several "Soda Creek", "Rock Creek", etc fires. Fire numbers were occasionally missing or incorrect. Fires on BLM were included if they were "Assists". Also, fires on satellite refuges and the district were also included. Acreages from GIS were compared to FMIS acres. Please see documentation in ServCat (URL) to see how these were handled.

  11. Data from: VCR LTER Global Positioning System Projects 1992 to 2004

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles Carlson; Charles Carlson (2015). VCR LTER Global Positioning System Projects 1992 to 2004 [Dataset]. https://search.dataone.org/view/knb-lter-vcr.156.16
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Charles Carlson; Charles Carlson
    Time period covered
    Feb 1, 1994 - Dec 31, 2004
    Area covered
    Variables measured
    LAT, LON, DATE, UTMX, UTMY, COMMENTS, ELEV_ELL, ELEV_MSL, FILENAME, LOCATION, and 1 more
    Description

    This dataset is a compendium of GPS Data collected by Randy Carlson and collaborators on the Virginia Coast Reserve (primarily), Plum Island and North Inlet. A master data table was extracted by Charles L. Carlson during 2013 that includes all the individual point locations recovered from individual surveys. In addition to the data table, the data is also shared as a .zip file containing a static web page with links to particular projects and the underlying data. To use the data, unzip it and use your web browser to open the index.html file. Web page contents include: American Oyster Catchers on the Virginia Coast Reserve - 2003 Lynette Winters - Salicornia - MSL elevation project Dynamic Evolution of Barrier Island Morphology and Ecology from 1996-2002 Documented Using High -Resolution GPS-GIS Topographic Mapping Surveys, Virginia Coast Reserve (for GSA, Denver, CO Oct 27-30, 2002 Broadwater Tower Overwash Fan Photos - Feburary 15, 2002 Hog Island Bay DGPS Drifter Study 2001 Ray Dueser/Nancy Moncrief Small Mammal GPS/GIS A Topographical History of North Myrtle Island, 1974 to 2001 Ray Dueser/Nancy Moncrief - Highest Elevations on VCR Barrier Islands Myrtle Island Planimetric area, Surface area & Volumetric Calculations 1996-2001 Myrtle, Ship Shoal GIS/GPS UTM Shape Files and Grids Myrtle, Ship Shoal, ESNWR, Shirley, Steelman's Landing Text Files Complete List of All Small Mammal Trap locations 1995 - 2001 Ship Shoal Island Small Mammal Traps 1997 - 2000 LTER Cross-Site GPS Surveys Hobcaw Barony / Baruch Institue SET/GPS Survey, South Carolina, December 2000 PIE/LTER - Plum Island Sound GPS Network, July 1998 Montandon Marsh at Bucknell University, Lewisburg, Pennsylvania 1997 Bathymetric Survey Procedures, Schematic Diagrams and Instructions The following instructions and procedures are used with reference to the Trimble 4000 SE Global Positioning System receiver, the Trimble NavBeacon XL, the Innerspace Digital Fathometer (Model 448) and the Innerspace DataLog with Guidance Software. GPS-referenced digital bathymetry Schematic Diagram of DGPS/Digital Fathometer connections for bathymetry Instructions for DataLog w/Guidance Software (Innerspace Digital Fathometer) Instructions for Trimble 4000 SE GPS Receiver and Trimble Navbeacon XL Innerspace Digital Fathometer - Model 448 - Field Protocol for Bathymetric Surveys Archived Bathymetric Projects Hog Island Bay DGPS Bathymetric Survey, 1999/2000 Phillip's Creek DGPS Bathymetric Survey 1999/2000 Oyster Harbor Bathymetric Survey (February 2000) Smith Point, Chesapeake Bay, Maryland DGPS Bathymetric Survey, Sept. 2001 Fishermans/Smith/Mockhorn Bay Bathymetric Survey 2000 to 2001 Post-processed Kinematic GPS data: Is It Precise? (1998) Small Mammal GPS/GIS Applications Hog Island Small Mammal Traps on T1, T2, T4, T5 Fowling Point 1996, 1997 Geomorphology Applications Parramore Island, Virginia Parramore Pimple Overwash Fans 1996 Parramore Pimple Overwash Fans 1997 Parramore Island Overwash Fans June 1998 Parramore Island Plugs - August 1998 Parramore Island Overwash Fan 1999 Hog Island, Virginia Broadwater Tower Overwash Fan June 1998 Photos of Broadwater Tower Overwash Fan - March 13, 1999 Broadwater Tower Overwash Fan 1999 Myrtle Island, Virginia A Topographical History of Myrtle Island, 1996 to 2001 Cobb and Fisherman's Islands, Virginia Cobb Island Overwash Fan July 1998 Fisherman's Island - ESNWR and ODU September /1998 Brownsville Farm GPS/GIS Project Long-Term Inundation Project, Christian/Thomas Brinson/Christian/Blum Project Eileen Appolone (ECU) Lisa Ricker's Static GPS Points in Northampton County Eileen Applone (East Carolina University) Static Survey d99124 Brownsville Farm GPS/GIS Project, Christian/Blum/Brinson VCR/LTER Tide Gauges and Water Level Recorders Red Bank Tide Gauge (part of Fowling Pt. survey) Hog Island WLR's 1996 (Brinson) Hog Island Tide Gauge 12/96 High tide surveys at PIE/LTER with Chuck Hopkinson Jim Morris, USC, at Debidue Island, South Carolina Benchmark BRNV in Brownsville, VCR/LTER Miscellaneous Static Sub-Networks Frank Day/Don Young - North Hog 2/99 (Excel File) or a TEXT file Frank Day 120 YR Old Dune Survey (Excel File) or a TEXT file Kindra Loomis GPS Kinematic/Topographic Survey 12/97 Clubhouse Creek at Parramore Island 1997 Phragmites on Southern Hog Island - (dataset only) (9/98) Oyster Harbor 1997 (Hayden & Porter) Southern Hog 1996 (Zieman) VCR/LTER Sediment Elevation Tables - Mockhorn/Wachapreague, August 2001 Aaron Mills Benchmarks - Research Field in Oyster, October 2001 Birds Nests on the Virginia Coast Reserve VCR Birds 1997 (Erwin) VCR Birds 1995 and 1996 (Erwin) Mike Erwin/ Rachel Rounds/ Shellpile Poin... Visit https://dataone.org/datasets/knb-lter-vcr.156.16 for complete metadata about this dataset.

  12. f

    Santa Fe National Forest GIS (Geographic Information Systems) Data

    • datasetcatalog.nlm.nih.gov
    • agdatacommons.nal.usda.gov
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Service, USDA Forest (2023). Santa Fe National Forest GIS (Geographic Information Systems) Data [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001030557
    Explore at:
    Dataset updated
    Nov 30, 2023
    Authors
    Service, USDA Forest
    Description

    Some of the finest mountain scenery in the Southwest is found in the 1.6-million-acre Santa Fe National Forest. Here, you can find the headwaters of Pecos, Jemez, and Gallinas Rivers; mountain streams; lakes; and trout fishing. Travel into Pecos, San Pedro Parks, Chama, and Dome Wildernesses via wilderness pack trips, saddle, or on 1,000 miles of hiking trails. Try whitewater rafting on the Rio Chama or Rio Grande from May to September. Consider turkey, elk, deer, and bear hunting, or visit one of many nearby Indian pueblos, Spanish missions, and Indian ruins. Golden aspen grace the high country from September to October and snow blankets Santa Fe Ski Basin in winter. The Santa Fe National Forest GIS data available for download includes Santa Fe National Forest Geospatial (GIS) Datasets, Motor Vehicle Use Map (MVUM) Travel Aids - digital maps and data of the SFNF to upload to GPS units or Smart Phones, 7.5 Minute Topographic Maps (PDF and GeoTIFF) - US Forest Service topo maps only, USFS Geospatial Clearinghouse - includes GIS data of vegetation treatments, administrative boundaries, inventoried roadless areas, FSTopo datasets, USGS Map Locator and Downloader - download current and historic topo maps, Hardcopy Maps with information on how to purchase hard copy visitor, wilderness, or topographic maps. Resources in this dataset:Resource Title: Santa Fe National Forest Geospatial Data. File Name: Web Page, url: https://www.fs.usda.gov/main/santafe/landmanagement/gis

  13. a

    GPS Roads Maya Forest GIS

    • spatialdiscovery-ucsb.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jan 1, 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of California, Santa Barbara (2000). GPS Roads Maya Forest GIS [Dataset]. https://spatialdiscovery-ucsb.opendata.arcgis.com/datasets/gps-roads-maya-forest-gis-1
    Explore at:
    Dataset updated
    Jan 1, 2000
    Dataset authored and provided by
    University of California, Santa Barbara
    Area covered
    Description

    In the 2000 field season of the BRASS/El Pilar Program, the UCSB Maya Forest GIS collected and processed GPS data for drivable roads in parts of Western Belize and the Peten of Guatemala. Selected for the work were Garmin GPS units accurate from 3-10m (after the US government released Selective Availability SA of error).

  14. A GIS dataset of bird nests mapped in the Windmill Islands by Frederique...

    • data.gov.au
    • data.aad.gov.au
    • +3more
    cfm, shp
    Updated Dec 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Antarctic Division (2015). A GIS dataset of bird nests mapped in the Windmill Islands by Frederique Olivier and Drew Lee during the 2002-2003 season [Dataset]. https://data.gov.au/data/dataset/activity/aad-birdscasey0203
    Explore at:
    shp, cfmAvailable download formats
    Dataset updated
    Dec 12, 2015
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Windmill Islands
    Description

    Very little information is known about the distribution and abundance of snow petrels at the regional scale. This dataset contains locations of bird nests, mostly snow petrels, mapped in the Windmill Islands during the 2002-2003 season. Location of nests were recorded with handheld GPS receivers connected to a pocket PC and stored as a shapefile using Arcpad (ESRI software). Descriptive information relating to each bird nest was recorded and a detailed description of data fields is provided in the detailed description of the shapefiles.

    Two observers conducted the surveys using distinct methodologies, Frederique Olivier (FO) and Drew Lee (DL). Three separate nest location files (ArcView point shapefiles) were produced and correspond to each of the survey methodologies used. Methodology 1 was the use of 200*200 m grid squares in which exhaustive searches were conducted (FO). Methodology 2 was the use of 2 transects within each the 200*200 m grid squares; methodology 3 was the use of 4 small quadrats (ca 25 m) located within the 200*200m grid squares (DL). Nests mapped in a non-systematic manner (not following a specific methodology) are clearly identified within each dataset. Datasets were kept separate due to the uncertainties caused by GPS errors (the same nest may have different locations due to GPS error).

    Three separate shapefiles describe survey methodologies:

    • one polygon shapefile locates the 200*200 grid sites searched systematically (FO)

    • one polygon shapefile locates the small quadrats (DL)

    • one line shapefile locates line transects (DL)

    Spatial characteristics, date of survey, search effort, number of nests found and other parameters are recorded for the grid sites, transect and quadrats.

    See the word document in the file download for more information.

    This work has been completed as part of ASAC project 1219 (ASAC_1219).

    The fields in this dataset are:

    Species

    Activity

    Type

    Entrances

    Slope

    Remnants

    Latitude

    Longitude

    Date

    Snow

    Eggchick

    Cavitysize

    Cavitydepth

    Distnn

    Substrate

    Comments

    SitedotID

    Aspect

    Firstfred

    Systematic/Edge/Incidental

    RecordCode

  15. T

    Operational Layer_data

    • opendata.utah.gov
    Updated Apr 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Operational Layer_data [Dataset]. https://opendata.utah.gov/dataset/Operational-Layer_data/k8f9-42hf
    Explore at:
    csv, xlsx, xml, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    Apr 30, 2020
    Description

    This data depicts the Public Land Survey System (PLSS) for the state of Utah and are based on Geographic Coordinate Database (GCDB) coordinate data. This dataset was created to provide continuous cadastre data for the state of Utah.This data is Version 2.1 2019 of the Utah PLSS Fabric. This data set represents the GIS Version of the Public Land Survey System. Updates are expected annually as horizontal control positions from published sources and global positioning system (GPS) observations are added. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. This data was originally published on 1/3/2017. Updated 1/18/2019These are the corner points of the PLSS. This data set contains summary information about the coordinate location and reliability of corner coordinate information. The information in the corner feature has been collected by the identified data steward. For more information about corner locations, credits and use limitations the identified data steward in the corner feature should be contacted.

  16. n

    Macquarie Island GIS data update from various sources

    • cmr.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    cfm
    Updated Apr 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Macquarie Island GIS data update from various sources [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214313625-AU_AADC.html
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Apr 26, 2017
    Time period covered
    Jun 1, 1997 - May 31, 2012
    Area covered
    Description

    This dataset is comprised of data that contributes to the Australian Antarctic Data Centre's geographic data of Macquarie Island but is not part of a larger dataset. Data sources include GPS surveys, sketches on maps and advice from Australian Antarctic Division and Tasmanian Parks and Wildlife Service personnel. Data in this dataset has Dataset ID 81 and is included in the the Australian Antarctic Data Centre's geographic data of Macquarie Island available for download (see Related URLs below). The original data provided to the Australian Antarctic Data Centre may also be available for download (see Related URLs below).

  17. Mawson Station Fire Hydrants and Fire Hose Reels GIS Dataset

    • data.aad.gov.au
    • researchdata.edu.au
    • +2more
    Updated May 31, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BOYLE, MARTIN (2013). Mawson Station Fire Hydrants and Fire Hose Reels GIS Dataset [Dataset]. https://data.aad.gov.au/metadata/records/gis250
    Explore at:
    Dataset updated
    May 31, 2013
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    BOYLE, MARTIN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 1999 - May 31, 2013
    Area covered
    Description

    This point GIS dataset shows the locations of the fire hydrants and fire hose reels at Mawson station, Antarctica. The data are formatted according to the SCAR Feature Catalogue (see Related URL below). Enter the Qinfo number of any feature at the 'Search datasets and quality' tab to search for data quality information about the feature: for example, the source of the data.

  18. a

    Maine Beach Mapping Shoreline Types

    • mgs-maine.opendata.arcgis.com
    • data-smpdc.opendata.arcgis.com
    Updated Oct 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2017). Maine Beach Mapping Shoreline Types [Dataset]. https://mgs-maine.opendata.arcgis.com/datasets/maine-beach-mapping-shoreline-types
    Explore at:
    Dataset updated
    Oct 19, 2017
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    GIS dataset includes surveyed shoreline positions for most of the larger beach systems along the southern to mid-coast Maine coastline in York, Cumberland, and Sagadahoc counties. Data were collected using a Leica GS-15 network Real Time Kinematic Global Positioning System (RTK-GPS), and in areas with poor cellular coverage, an Ashtech Z-Xtreme RTK-GPS. Both systems typically have horizontal and vertical accuracies of less than 5 cm. In general, surveys are attempted to be repeated at approximately the same month in each consecutive survey year, however this is not always possible. As a result, the number of available shoreline positions may vary by beach.The line feature class includes the following attributes:BEACH_NAME: The name of the beach where a shoreline was surveyed.SURVEY_DATE: The date (year, month, day; for example 20160901 would be September 1, 2016) upon which a shoreline was surveyed.SURVEY_YEAR: The year (e.g., 2016) within which a shoreline was surveyed.SHAPE_LENGTH: The length, in meters, of the surveyed shoreline.

  19. n

    InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/interagencyfireperimeterhistory-all-years-view
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email

  20. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Win, Nang Tin (2023). GIS database [Dataset]. http://doi.org/10.7910/DVN/TV7J27

GIS database

Explore at:
Dataset updated
Nov 8, 2023
Dataset provided by
Harvard Dataverse
Authors
Win, Nang Tin
Time period covered
Oct 1, 2020 - Sep 30, 2022
Description

It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

Search
Clear search
Close search
Google apps
Main menu