Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a detailed breakdown of the economically active population aged 15 years and above in Qatar, categorized by age group and occupation. The data reflects the distribution of the labor force across various occupational groups and age brackets, offering insights into employment patterns and workforce demographics. The classification of occupations follows the International Standard Classification of Occupations (ISCO-88).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides the number of economically active individuals aged 15 years and above in the State of Qatar, classified by nationality (Qatari and Non-Qatari), gender (male and female), and economic sector. It includes both government and private sector participation, as well as mixed, nonprofit, diplomatic, and domestic work. The dataset enables analysis of labor force participation patterns across demographic and institutional dimensions.
These data are taken from the ANNUAL datasets from the Labour Force Survey (LFS) carried out by the Office for National Statistics (ONS), providing labour market data back to 1996 for the NUTS2 areas in Wales, and back to 2001 for the local authorities in Wales. The availability of local authority data is dependent upon on an enhanced sample (around 350 per cent larger) for the annual LFS, which commenced in 2001. For years labelled 1996 to 2004 in this dataset, the actual periods covered are the 12 months running from March in the year given to February in the following year (e.g. 2001 = 1 March 2001 to 28 February 2002). Since 2004, the annual data have been produced on a rolling annual basis, updated every three months, and the dataset is now referred to as the Annual Population Survey (APS). The rolling annual averages are on a calendar basis with the first rolling annual average presented here covering the period 1 January 2004 to 31 December 2004, followed by data covering the period 1 April 2004 to 31 March 2005, with rolling quarterly updates applied thereafter. Note therefore that the consecutive rolling annual averages overlap by nine months, and there is also a two-month overlap between the last period presented on the former March to February basis, and the first period on the new basis. The population can be broken down into economically active and economically inactive populations. The economically active population is made up of persons in employment, and persons unemployed according to the International Labour Organisation (ILO) definition. This report allows the user to access these data. Although each measure is available for different population bases, there is an official standard population base used for each of the measures, as follows. Population aged 16 and over: Economic activity level, Employment level, ILO unemployment level Population aged 16-64: Economic inactivity level 16-64 population is used as the base for economic inactivity. By excluding persons of pensionable age who are generally retired and therefore economically inactive, this gives a more appropriate measure of workforce inactivity. Rates for each of the above measures are also calculated in a standard manner and are available in the dataset. With the exception of the ILO unemployment rate, each rate is defined in terms of the shares of population that fall into each category. The ILO unemployment rate is defined as ILO unemployed persons as a percentage of the economically active population. Although each rate is available for the different population bases, there is an official standard population base used for each of the rates, as follows. Percentage of population aged 16-64: Economic activity, Employment,. Economic inactivity Percentage of economically active population aged 16 and over: ILO unemployment
Dataset replaced by: http://data.europa.eu/euodp/data/dataset/4VAPWwtCLNFWcuhXVuDKuA
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Economically Active Population: Age 15 and Above: Period Avg: Male data was reported at 38,910.869 Person th in 2024. This records a decrease from the previous number of 39,168.050 Person th for 2023. Economically Active Population: Age 15 and Above: Period Avg: Male data is updated yearly, averaging 38,834.443 Person th from Dec 2017 (Median) to 2024, with 8 observations. The data reached an all-time high of 39,290.607 Person th in 2017 and a record low of 38,393.506 Person th in 2022. Economically Active Population: Age 15 and Above: Period Avg: Male data remains active status in CEIC and is reported by Federal State Statistics Service. The data is categorized under Global Database’s Russian Federation – Table RU.GB001: Economically Active Population: Employed and Unemployed.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Projections of the number of economically active people, household population and economic activity rates broken down by age and sex. Source agency: Office for National Statistics Designation: National Statistics Language: English Alternative title: LFS projections
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides statistics on the economically active population aged 15 years and above, disaggregated by Nationality and Occupation . It compares census data from 2010 and 2020 to highlight labor market trends and nationality participation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ukraine Labour Force: Working Age: Male: Economically Active Population data was reported at 8,755.200 Person th in 2021. This records a decrease from the previous number of 8,889.100 Person th for 2020. Ukraine Labour Force: Working Age: Male: Economically Active Population data is updated yearly, averaging 10,809.350 Person th from Dec 2004 (Median) to 2021, with 18 observations. The data reached an all-time high of 11,119.700 Person th in 2008 and a record low of 8,755.200 Person th in 2021. Ukraine Labour Force: Working Age: Male: Economically Active Population data remains active status in CEIC and is reported by State Statistics Service of Ukraine. The data is categorized under Global Database’s Ukraine – Table UA.G010: Labour Force: Annual. Data release delayed due to the Ukraine-Russia conflict. No estimation on next release date can be made.
Economically active population comprises all population aged 15–70 of either sex who during reporting period performed the work related to the production of goods and services.
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
New reweighting policy
Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Additional data derived from the QLFS
The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.
Variables DISEA and LNGLST
Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.
An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
2022 Weighting
The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.
Latest edition information
For the second edition (February 2025), the data file was resupplied with the 2024 weighting variable included (LGWT24).
Abstract copyright UK Data Service and data collection copyright owner.The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.Occupation data for 2021 and 2022The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022APS Well-Being DatasetsFrom 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.APS disability variablesOver time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage. End User Licence and Secure Access APS dataUsers should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to: age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family nationality and country of origin geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district health: including main health problem, and current and past health problems education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from system variables: including week number when interview took place and number of households at address The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements. Main Topics:Topics covered include: household composition and relationships, housing tenure, nationality, ethnicity and residential history, employment and training (including government schemes), workplace and location, job hunting, educational background and qualifications. Many of the variables included in the survey are the same as those in the LFS. Multi-stage stratified random sample Face-to-face interview Telephone interview 2023 2024 ADULT EDUCATION AGE ANXIETY APPLICATION FOR EMP... APPOINTMENT TO JOB ATTITUDES BONUS PAYMENTS BUSINESSES CARE OF DEPENDANTS CHRONIC ILLNESS COHABITATION CONDITIONS OF EMPLO... COVID 19 DEBILITATIVE ILLNESS DEGREES DISABILITIES Demography population ECONOMIC ACTIVITY EDUCATIONAL BACKGROUND EDUCATIONAL COURSES EMPLOYEES EMPLOYER SPONSORED ... EMPLOYMENT EMPLOYMENT HISTORY EMPLOYMENT PROGRAMMES ETHNIC GROUPS FAMILIES FAMILY BENEFITS FIELDS OF STUDY FULL TIME EMPLOYMENT FURNISHED ACCOMMODA... FURTHER EDUCATION GENDER HAPPINESS HEADS OF HOUSEHOLD HEALTH HIGHER EDUCATION HOME OWNERSHIP HOURS OF WORK HOUSEHOLDS HOUSING HOUSING BENEFITS HOUSING TENURE INCOME INDUSTRIES JOB CHANGING JOB HUNTING JOB SEEKER S ALLOWANCE LANDLORDS Labour and employment MANAGERS MARITAL STATUS NATIONAL IDENTITY NATIONALITY OCCUPATIONS OVERTIME PART TIME COURSES PART TIME EMPLOYMENT PLACE OF BIRTH PLACE OF RESIDENCE PRIVATE SECTOR PUBLIC SECTOR RECRUITMENT REDUNDANCY REDUNDANCY PAY RELIGIOUS AFFILIATION RENTED ACCOMMODATION RESIDENTIAL MOBILITY SELF EMPLOYED SICK LEAVE SICKNESS AND DISABI... SOCIAL HOUSING SOCIAL SECURITY BEN... SOCIO ECONOMIC STATUS STATE RETIREMENT PE... STUDENTS SUBSIDIARY EMPLOYMENT SUPERVISORS SUPERVISORY STATUS TAX RELIEF TEMPORARY EMPLOYMENT TERMINATION OF SERVICE TIED HOUSING TRAINING TRAINING COURSES TRAVELLING TIME UNEMPLOYED UNEMPLOYMENT UNEMPLOYMENT BENEFITS UNFURNISHED ACCOMMO... UNWAGED WORKERS WAGES WELL BEING HEALTH WELSH LANGUAGE WORKING CONDITIONS WORKPLACE vital statistics an...
Projections produced are consistent with both published sets of population projection. The first of these incorporated development trajectories derived from the 2009 Strategic Housing Land Availability Assessment and the second is based on the development trajectories assumed for the London Plan.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇸🇰 슬로바키아 English The table contains quarterly data on the number of economically active population broken down by sex and education.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Counts and proportions of males and females economically active or inactive and whether working full time, part time or whether self employed, unemployed etc. Source: Annual Population Survey (APS) Publisher: Nomis Geographies: Local Authority District (LAD), County/Unitary Authority, Government Office Region (GOR), National Geographic coverage: England Time coverage: 2004 to 2009 Type of data: Survey
The Labour Force Survey plays a vital role in providing reliable statistics on employment and economic issues, which makes it valuable for policy formulation, research and media.
The Quarterly Labour Force Survey, January-March 2023: Teaching Dataset (QLFS JM 23 teaching data) is a sub-sample from the main Quarterly Labour Force Survey, January - March 2023 (available from the UK Data Archive under SN 9097).
The QLFS JM 23 teaching dataset has been adapted for the purpose of teaching and learning.
The main differences are:
Further information is available in the study documentation which includes a dataset user guide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistical open data on LAU regions of Slovakia, Czech Republic, Poland, Hungary (and other countries in the future). LAU1 regions are called counties, okres, okresy, powiat, járás, járási, NUTS4, LAU, Local Administrative Units, ... and there are 733 of them in this V4 dataset. Overall, we cover 733 regions which are described by 137.828 observations (panel data rows) and more than 1.760.229 data points.
This LAU dataset contains panel data on population, on age structure of inhabitants, on number and on structure of registered unemployed. Dataset prepared by Michal Páleník. Output files are in json, shapefiles, xls, ods, json, topojson or CSV formats. Downloadable at zenodo.org.
This dataset consists of:
data on unemployment (by gender, education and duration of unemployment),
data on vacancies,
open data on population in Visegrad counties (by age and gender),
data on unemployment share.
Combined latest dataset
dataset of the latest available data on unemployment, vacancies and population
dataset includes map contours (shp, topojson or geojson format), relation id in OpenStreetMap, wikidata entry code,
it also includes NUTS4 code, LAU1 code used by national statistical office and abbreviation of the region (usually license plate),
source of map contours is OpenStreetMap, licensed under ODbL
no time series, only most recent data on population and unemployment combined in one output file
columns: period, lau, name, registered_unemployed, registered_unemployed_females, disponible_unemployed, low_educated, long_term, unemployment_inflow, unemployment_outflow, below_25, over_55, vacancies, pop_period, TOTAL, Y15-64, Y15-64-females, local_lau, osm_id, abbr, wikidata, population_density, area_square_km, way
Slovakia – SK: 79 LAU1 regions, data for 2024-10-01, 1.659 data,
Czech Republic – CZ: 77 LAU1 regions, data for 2024-10-01, 1.617 data,
Poland – PL: 380 LAU1 regions, data for 2024-09-01, 6.840 data,
Hungary – HU: 197 LAU1 regions, data for 2024-10-01, 2.955 data,
13.071 data in total.
column/number of observations description SK CZ PL HU
period period (month and year) the data is for 79 77 380 197
lau LAU code of the region 79 77 380 197
name name of the region in local language 79 77 380 197
registered_unemployed number of unemployed registered at labour offices 79 77 380 197
registered_unemployed_females number of unemployed women 79 77 380 197
disponible_unemployed unemployed able to accept job offer 79 77 0 0
low_educated unmployed without secondary school (ISCED 0 and 1) 79 77 380 197
long_term unemployed for longer than 1 year 79 77 380 0
unemployment_inflow inflow into unemployment 79 77 0 0
unemployment_outflow outflow from unemployment 79 77 0 0
below_25 number of unemployed below 25 years of age 79 77 380 197
over_55 unemployed older than 55 years 79 77 380 197
vacancies number of vacancies reported by labour offices 79 77 380 0
pop_period date of population data 79 77 380 197
TOTAL total population 79 77 380 197
Y15-64 number of people between 15 and 64 years of age, population in economically active age 79 77 380 197
Y15-64-females number of women between 15 and 64 years of age 79 77 380 197
local_lau region's code used by local labour offices 79 77 380 197
osm_id relation id in OpenStreetMap database 79 77 380 197
abbr abbreviation used for this region 79 77 380 0
wikidata wikidata identification code 79 77 380 197
population_density population density 79 77 380 197
area_square_km area of the region in square kilometres 79 77 380 197
way geometry, polygon of given region 79 77 380 197
Unemployment dataset
time series of unemployment data in Visegrad regions
by gender, duration of unemployment, education level, age groups, vacancies,
columns: period, lau, name, registered_unemployed, registered_unemployed_females, disponible_unemployed, low_educated, long_term, unemployment_inflow, unemployment_outflow, below_25, over_55, vacancies
Slovakia – SK: 79 LAU1 regions, data for 334 periods (1997-01-01 ... 2024-10-01), 202.082 data,
Czech Republic – CZ: 77 LAU1 regions, data for 244 periods (2004-07-01 ... 2024-10-01), 147.528 data,
Poland – PL: 380 LAU1 regions, data for 189 periods (2005-03-01 ... 2024-09-01), 314.100 data,
Hungary – HU: 197 LAU1 regions, data for 106 periods (2016-01-01 ... 2024-10-01), 104.408 data,
768.118 data in total.
column/number of observations description SK CZ PL HU
period period (month and year) the data is for 26 386 18 788 71 772 20 882
lau LAU code of the region 26 386 18 788 71 772 20 882
name name of the region in local language 26 386 18 788 71 772 20 882
registered_unemployed number of unemployed registered at labour offices 26 386 18 788 71 772 20 882
registered_unemployed_females number of unemployed women 26 386 18 788 62 676 20 882
disponible_unemployed unemployed able to accept job offer 25 438 18 788 0 0
low_educated unmployed without secondary school (ISCED 0 and 1) 11 771 9855 41 388 20 881
long_term unemployed for longer than 1 year 24 253 9855 41 388 0
unemployment_inflow inflow into unemployment 26 149 16 478 0 0
unemployment_outflow outflow from unemployment 26 149 16 478 0 0
below_25 number of unemployed below 25 years of age 11 929 9855 17 100 20 881
over_55 unemployed older than 55 years 11 929 9855 17 100 20 882
vacancies number of vacancies reported by labour offices 11 692 18 788 62 676 0
Population dataset
time series on population by gender and 5 year age groups in V4 counties
columns: period, lau, name, gender, TOTAL, Y00-04, Y05-09, Y10-14, Y15-19, Y20-24, Y25-29, Y30-34, Y35-39, Y40-44, Y45-49, Y50-54, Y55-59, Y60-64, Y65-69, Y70-74, Y75-79, Y80-84, Y85-89, Y90-94, Y_GE95, Y15-64
Slovakia – SK: 79 LAU1 regions, data for 28 periods (1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 152.628 data,
Czech Republic – CZ: 78 LAU1 regions, data for 24 periods (2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 125.862 data,
Poland – PL: 382 LAU1 regions, data for 29 periods (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 626.941 data,
Hungary – HU: 197 LAU1 regions, data for 11 periods (2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 86.680 data,
992.111 data in total.
column/number of observations description SK CZ PL HU
period period (month and year) the data is for 6636 5574 32 883 4334
lau LAU code of the region 6636 5574 32 883 4334
name name of the region in local language 6636 5574 32 883 4334
gender gender (male or female) 6636 5574 32 883 4334
TOTAL total population 6636 5574 32 503 4334
Y00-04 inhabitants between 00 to 04 years inclusive 6636 5574 32 503 4334
Y05-09 number of inhabitants between 05 to 09 years of age 6636 5574 32 503 4334
Y10-14 number of people between 10 to 14 years inclusive 6636 5574 32 503 4334
Y15-19 number of inhabitants between 15 to 19 years of age 6636 5574 32 503 4334
Y20-24 number of people between 20 to 24 years inclusive 6636 5574 32 503 4334
Y25-29 number of inhabitants between 25 to 29 years of age 6636 5574 32 503 4334
Y30-34 inhabitants between 30 to 34 years inclusive 6636 5574 32 503 4334
Y35-39 number of inhabitants between 35 to 39 years of age 6636 5574 32 503 4334
Y40-44 inhabitants between 40 to 44 years inclusive 6636 5574 32 503 4334
Y45-49 number of inhabitants younger than 49 and older than 45 years 6636 5574 32 503 4334
Y50-54 inhabitants between 50 to 54 years inclusive 6636 5574 32 503 4334
Y55-59 number of inhabitants between 55 to 59 years of age 6636 5574 32 503 4334
Y60-64 inhabitants between 60 to 64 years inclusive 6636 5574 32 503 4334
Y65-69 number of inhabitants younger than 69 and older than 65 years 6636 5574 32 503 4334
Y70-74 inhabitants between 70 to 74 years inclusive 6636 5574 24 670 4334
Y75-79 number of inhabitants between 75 to 79 years of age 6636 5574 24 670 4334
Y80-84 number of people between 80 to 84 years inclusive 6636 5574 24 670 4334
Y85-89 number of inhabitants younger than 89 and older than 85 years 6636 5574 0 0
Y90-94 inhabitants between 90 to 94 years inclusive 6636 5574 0 0
Y_GE95 number of people 95 years or older 6636 3234 0 0
Y15-64 number of people between 15 and 64 years of age, population in economically active age 6636 5574 32 503 4334
Notes
more examples at www.iz.sk
NUTS4 / LAU1 / LAU codes for HU and PL are created by me, so they can (and will) change in the future; CZ and SK NUTS4 codes are used by local statistical offices, so they should be more stable
NUTS4 codes are consistent with NUTS3 codes used by Eurostat
local_lau variable is an identifier used by local statistical office
abbr is abbreviation of region's name, used for map purposes (usually cars' license plate code; except for Hungary)
wikidata is code used by wikidata
osm_id is region's relation number in the OpenStreetMap database
Example outputs
you can download data in CSV, xml, ods, xlsx, shp, SQL, postgis, topojson, geojson or json format at 📥 doi:10.5281/zenodo.6165135
Counties of Slovakia – unemployment rate in Slovak LAU1 regions
Regions of the Slovak Republic
Unemployment of Czechia and Slovakia – unemployment share in LAU1 regions of Slovakia and Czechia
interactive map on unemployment in Slovakia
Slovakia – SK, Czech Republic – CZ, Hungary – HU, Poland – PL, NUTS3 regions of Slovakia
download at 📥 doi:10.5281/zenodo.6165135
suggested citation: Páleník, M. (2024). LAU1 dataset [Data set]. IZ Bratislava. https://doi.org/10.5281/zenodo.6165135
Abstract copyright UK Data Service and data collection copyright owner.Background The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation. Longitudinal data The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary. LFS Documentation The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.Occupation data for 2021 and 2022 data filesThe ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.2022 WeightingThe population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust. Latest edition informationFor the second edition (September 2023), a new version of the data file with revised SOC variables was deposited. Further information on the SOC revisions can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022. Main Topics:The five-quarter longitudinal datasets include a subset of the most commonly used variables from the Quarterly Labour Force Survey (QLFS), covering the main areas of the survey. See documentation for details Compilation or synthesis of existing material the datasets were created from existing QLFS data. They do not contain all records, but only those of respondents of working age who have responded to the survey in all the periods being linked. The data therefore comprise approximately one third of all QLFS variables. Cases were linked using the QLFS panel design.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden SE: Labour Force Participation Rate: National Estimate: % of Total Population Aged 15+ data was reported at 72.724 % in 2017. This records an increase from the previous number of 72.093 % for 2016. Sweden SE: Labour Force Participation Rate: National Estimate: % of Total Population Aged 15+ data is updated yearly, averaging 70.294 % from Dec 1965 (Median) to 2017, with 38 observations. The data reached an all-time high of 84.520 % in 1989 and a record low of 56.000 % in 1965. Sweden SE: Labour Force Participation Rate: National Estimate: % of Total Population Aged 15+ data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank.WDI: Labour Force. Labor force participation rate is the proportion of the population ages 15 and older that is economically active: all people who supply labor for the production of goods and services during a specified period.; ; International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average; The series for ILO estimates is also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides statistics on the economically active non-Qatari population aged 15 years and above, disaggregated by sex and employment status. It compares census data from 2010 and 2020 to highlight labor market trends and gender participation.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Labour market activity by nationality, country of birth and age, UK, published quarterly, non-seasonally adjusted. Labour Force Survey. These are official statistics in development.
Projections produced are consistent with the published population projections. These incorporated development trajectories derived from the 2009 Strategic Housing Land Availability Assessment and household formation rates taken from DCLG’s 2008-based household projections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a detailed breakdown of the economically active population aged 15 years and above in Qatar, categorized by age group and occupation. The data reflects the distribution of the labor force across various occupational groups and age brackets, offering insights into employment patterns and workforce demographics. The classification of occupations follows the International Standard Classification of Occupations (ISCO-88).