40 datasets found
  1. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  4. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2014). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2014
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. Subjective Well-Being of Africa 2020

    • kaggle.com
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diondra Stubbs (2021). Subjective Well-Being of Africa 2020 [Dataset]. https://www.kaggle.com/diondrakimberly/subjective-wellbeing-of-africa-2020
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Kaggle
    Authors
    Diondra Stubbs
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    This project analyzes the 2020 World Happiness Report to draw conclusions about the general well being of Africa. It uses several CSV files consisting of survey responses formed from a Google Form survey, data from the 2020 World Happiness Report and data on countries only in Africa from the 2020 World Happiness Report. The main data set used includes over 150 countries and their happiness scores, freedom to make life choices, social support, healthy life expectancy, regional indicator, perceptions of corruption and generosity. This analysis was done to answer the following data-driven questions: 'Which African country ranked the happiest in 2020?' and 'Which variable predicts or explains Africa's happiness score?'

    This project includes several programs created in R and Python.

    Background

    The Gallup World Poll (GWP) is conducted annually to measure and track public attitudes concerning political, social and economic issues, including controversial and sensitive subjects. Annually, this poll tracks attitudes toward law and order, institutions and infrastructure, jobs, well-being and other topics for approximately 150 countries worldwide. The data gathered from the GWP is used to create an annual World Happiness Report (WHR). The World Happiness Report is conducted to review the science of understanding and measuring the subjective well-being and to use survey measures of life satisfaction to track the quality of lives in over 150 countries.

    At first glance, it seems that world happiness isn't important or maybe it's just an emotional thing. However, several governments have started to look at happiness as a metric to measure success. Happiness Scores or Subjective Well-being (SWB) are national average responses to questions of life evaluation. They are important because they remind policy makers and people in power that happiness is based on social capital, not just financial. Happiness is often considered an essential and useful way to guide public policies and measure their effectiveness. It is also important to note that happiness scores point out the importance of qualitative rather than quantitative. At times, quality is better than quantity.

    Africa is the world's second largest and second most populous continent in the world. It consists of 54 countries meaning that Africa has the most countries. Africa has approximately 30% of the earth's mineral resources and has the largest reserves of precious metals. Africa reserves over 40% of the gold reserves, 60% on cobalt and 90% of platinum. However, Africa unfortunately has the most developmental challenges. It is the world's poorest and most underdeveloped continent. Africa is also almost 100% colonized with the exceptions of Ethiopia and Liberia. Given this information, one can wonder what the SWB or state of happiness is in Africa?

    This site analyzes the 2020 World Happiness Report to draw conclusions to data-drive questions listed later on this page. The focus is specifically on countries in Africa. Even though there are 54 countries in Africa, only 43 participated in the 2020 WHR.

    Content

    The dataset used is generated from the 'World Happiness Report 2020'. This dataset contains the Happiness Score for over 150 countries for the year of 2020. The data gathered from the Gallup World Poll gives a national average of Happiness scores for countries all over the world. It is a annual landmark survey of the state of global happiness.

    This dataset is from the data repository "Kaggle". On Kaggle's dataset page, I searched for Africa Happiness after filtering the search to CSV file type. I wasn't able to find any datasets that could answer my questions that didn't include other countries from different continents. I decided to use a Global Happiness Report to answer the questions I have. The dataset I am using was publish by Micheal Londeen and it was created on March 24, 2020. His main source is the World Happiness Report for 2020.

    Variables

    Happiness score or subjective well-being (variable name ladder ): The survey measure of SWB is from the Feb 28, 2020 release of the Gallup World Poll (GWP) covering years from 2005 to 2019. Unless stated otherwise, it is the national average response to the question of life evaluations. The English wording of the question is “Please imagine a ladder, with steps numbered from 0 at the bottom to 10 at the top. The top of the ladder represents the best possible life for you and the bottom of the ladder represents the worst possible life for you. On which step of the ladder would you say you personally feel you stand at this time?” This measure is also referred to as Cantril life ladder, or just life ladder in our analysis.

    Healthy Life Expectancy (HLE). Healthy life expectancies at birth are based on the data extracted from the World Health Organization’s (WHO) Global Health Observatory dat...

  6. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  7. T

    EMPLOYMENT RATE by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 6, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). EMPLOYMENT RATE by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/employment-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Dec 6, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for EMPLOYMENT RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. Global Counter Trafficking Dataset

    • kaggle.com
    Updated Oct 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan (2021). Global Counter Trafficking Dataset [Dataset]. https://www.kaggle.com/datasets/rydela/global-countertrafficking-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ryan
    License

    http://www.gnu.org/licenses/agpl-3.0.htmlhttp://www.gnu.org/licenses/agpl-3.0.html

    Description

    What is the Counter-Trafficking Data Collaborative?

    The Counter-Trafficking Data Collaborative is the first global data hub on human trafficking, publishing harmonized data from counter-trafficking organizations around the world. Launched in November 2017, the goal of CTDC is to break down information-sharing barriers and equip the counter-trafficking community with up to date, reliable data on human trafficking.

    The global victim of trafficking dataset

    The CTDC global victim of trafficking dataset is the largest of its kind in the world, and currently exists in two forms. The data are based on case management data, gathered from identified cases of human trafficking, disaggregated at the level of the individual. The cases are recorded in a case management system during the provision of protection and assistance services, or are logged when individuals contact a counter-trafficking hotline. The number of observations in the dataset increases as new records are added by the contributing organizations. The global victim of trafficking dataset that is available to download from the website in csv format has been mathematically anonymized, and the complete, non k-anonymized version of the dataset is displayed throughout the website through visualizations and charts showing detailed analysis.

    Where do the data come from?

    The data come from a variety of sources. The data featured in the global victim of trafficking dataset come from the assistance activities of the contributing organizations, including from case management services and from counter-trafficking hotline logs.

    How are the global datasets created?

    Each dataset has been created through a process of comparing and harmonizing existing data models of contributing partners and data classification systems. Initial areas of compatibility were identified to create a unified system for organizing and mapping data to a single standard. Each contributing organization transforms its data to this shared standard and any identifying information is removed before the datasets are made available.

    How is the individual-level data protected?

    Step 1

    Counter-trafficking case data contains highly sensitive information, and maintaining privacy and confidentiality is of paramount importance for CTDC. For example, all explicit identifiers, such as names, were removed from the global victim dataset and some data such as age has been transformed into age ranges. No personally identifying information is transferred to or hosted by CTDC, and organizations that want to contribute are asked to anonymize in accordance to the standards set by CTDC.

    Step 2

    In addition to the safeguard measures outlined in step 1 the global victim dataset has been anonymized to a higher level, through a mathematical approach called k-anonymization. For a full description of k-anonymization, please refer to the definitions page.

    IOM collects and processes data in accordance to its own Data Protection Policy. The other contributors adhere to relevant national and international standards through their policies for collecting and processing personal data.

    How to interpret the data?

    These data reflect the victims assisted/identified/referred/reported to the contributing organizations, which may not represent all victims identified within a country. Nevertheless, the larger the sample size for a given country (or, the more victims displayed on the map for a given country), the more representative the data are likely to be of the identified victim of trafficking population.

    A larger number of identified victims of trafficking does not imply that there is a larger number of undetected victims of trafficking (i.e. a higher prevalence of trafficking).

    In addition, samples of identified victims of trafficking cannot be considered random samples of the wider population of victims of trafficking (which includes unidentified victims), since counter-trafficking agencies may be more likely to identify some trafficking cases rather than others. However, with this caveat in mind, the profile of identified victims of trafficking tends to be considered as indicative of the profile of the wider population, given that the availability of other data sources is close to zero.

    How does human trafficking case data relate to prevalence data?

    There are currently no global or regional estimates of the prevalence of human trafficking. National estimates have been conducted in a few countries but they are also based on modelling of existing administrative data from identified cases and should therefore only be considered as basic baseline estimates. Historically, producing estimates of the prevalence of trafficking based on the collection of new primary data through surveys, for example, has been difficult. This is due to trafficking’s complicated legal definition and the challenges of a...

  9. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  10. Educational Backgrounds of Successful People

    • kaggle.com
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Educational Backgrounds of Successful People [Dataset]. https://www.kaggle.com/datasets/adilshamim8/educational-backgrounds-of-successful-people/versions/2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Note: Let's collaborate to make this dataset bigger! Connect with me if you're interested.

    The “Educational Backgrounds of Successful People” dataset brings together comprehensive academic profiles for over 30 distinguished figures across entrepreneurship, science, politics, entertainment, sports, and activism. Each record captures the individual’s highest completed degree (or enrollment status), field of study, awarding institution, graduation year, location, institutional ranking, academic performance, and notable scholarships or honors. By aggregating these educational trajectories in one structured CSV, the dataset enables clear, cross‑comparable insights into the academic foundations behind world‑renowned achievement.

    Key Features

    • Broad Representation: Profiles span diverse professions—from Nobel laureates and Fortune 500 CEOs to Olympic champions and social activists.
    • Rich Academic Metadata: Includes institution country, global ranking, GPA (or equivalent), and prestigious scholarships/awards.
    • Complete Educational Paths: Notes both completed degrees and in‑progress or “dropped out” statuses to illustrate alternative success routes.
    • CSV‑Friendly Structure: Ten well‑labeled columns facilitate quick import into any analytics tool or database.

    Columns and Descriptions

    ColumnDescription
    NameFull name of the individual.
    ProfessionPrimary field or role (e.g., Entrepreneur, Scientist).
    DegreeHighest completed degree (e.g., PhD, MBA) or enrollment status.
    FieldMajor or area of study.
    InstitutionName of the university or school.
    Graduation YearYear degree was conferred (or expected).
    CountryCountry where the institution resides.
    Global RankingApproximate world ranking (QS/The Times).
    GPA (or Equivalent)Grade point average or comparable metric.
    Scholarship/AwardNotable academic honors received.

    Why This Dataset Matters

    • Educational Research: Compare how different academic paths correlate with later accomplishments.
    • Policy & Guidance: Inform educators and career counselors about common institutional and field‑of‑study patterns among high achievers.
    • Visualization & Storytelling: Create compelling charts—e.g., the frequency of Ivy League degrees or average GPAs—highlighting trends in elite education.
    • Machine Learning & Clustering: Cluster profiles by educational attributes to uncover hidden groupings (e.g., STEM vs. business‑oriented leaders).
  11. A

    ‘Supply Chain Shipment Pricing Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Supply Chain Shipment Pricing Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-supply-chain-shipment-pricing-data-1c7d/latest
    Explore at:
    Dataset updated
    Feb 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Supply Chain Shipment Pricing Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/e7707c1f-2856-4df6-8d0c-ed1ba8a3cd91 on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This data set provides supply chain health commodity shipment and pricing data. Specifically, the data set identifies Antiretroviral (ARV) and HIV lab shipments to supported countries. In addition, the data set provides the commodity pricing and associated supply chain expenses necessary to move the commodities to countries for use. The dataset has similar fields to the Global Fund's Price, Quality and Reporting (PQR) data. PEPFAR and the Global Fund represent the two largest procurers of HIV health commodities. This dataset, when analyzed in conjunction with the PQR data, provides a more complete picture of global spending on specific health commodities. The data are particularly valuable for understanding ranges and trends in pricing as well as volumes delivered by country. The US Government believes this data will help stakeholders make better, data-driven decisions. Care should be taken to consider contextual factors when using the database. Conclusions related to costs associated with moving specific line items or products to specific countries and lead times by product/country will not be accurate.

    --- Original source retains full ownership of the source dataset ---

  12. d

    Map Data Street Noise Levels | 237 Countries Coverage | CCPA, GDPR Compliant...

    • datarade.ai
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Silencio Network (2025). Map Data Street Noise Levels | 237 Countries Coverage | CCPA, GDPR Compliant | 100% Opted-In Users | 35 B + Data Points | 100% Traceable Consent [Dataset]. https://datarade.ai/data-products/map-data-street-noise-levels-237-countries-coverage-ccpa-silencio-network
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Quickkonnect UG
    Authors
    Silencio Network
    Area covered
    United States
    Description

    Street Noise-Level — Statistically Interpolated + Processed Measurements

    Connect with our experts for the world’s most comprehensive Street Noise-Level Dataset. Access hyper-local and global average noise levels (dBA) from public streets across over 200 countries. This dataset, built using over 35 billion datapoints and developed in collaboration with leading acoustics professionals, provides unparalleled insight into real-world urban soundscapes. Unlike conventional noise models, which rely solely on simulations, our dataset combines real measurements with AI-powered interpolation to deliver statistically robust, highly accurate, and spatially complete noise-level data.

    Power Your AI & Urban Analytics with Real-World Noise Insights

    What makes this dataset unique? Silencio’s processed and interpolated Street Noise-Level Dataset is the largest and most precise global collection of acoustic data available. It integrates real user-collected measurements with AI-driven modeling, ensuring unmatched ground truth for AI training, urban intelligence, and noise-impact assessments.

    Optimized for AI, Urban Planning & Research:

    Empower your AI models and spatial analyses with rich, diverse, and realistic noise data. Ideal for sound recognition, smart cities, mobility modeling, noise mapping, real estate analysis, and sustainable urban planning.

    Trusted & Compliant:

    All data is collected via our mobile app, strictly anonymized, fully consented, and 100% GDPR-compliant — ensuring privacy and ethical integrity.

    Historical & Up-to-Date:

    Leverage both historical and continuously updated noise data to uncover trends, detect change, and power predictive models.

    Hyper-Local & Global Coverage:

    With coverage of over 200 countries and high spatial granularity, the dataset provides insights from the city level down to street segments.

    Seamless Integration:

    Delivered via CSV exports or S3 bucket delivery (APIs coming soon) for easy integration into AI training pipelines, geospatial tools, or analytics platforms.

  13. A

    ‘Supply Chain Shipment Pricing Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Oct 28, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2015). ‘Supply Chain Shipment Pricing Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-supply-chain-shipment-pricing-data-68a4/03a0bbc2/?iid=027-032&v=presentation
    Explore at:
    Dataset updated
    Oct 28, 2015
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Supply Chain Shipment Pricing Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/f130af56-ebf3-447f-b426-7d3b6f204c4d on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This data set provides supply chain health commodity shipment and pricing data. Specifically, the data set identifies Antiretroviral (ARV) and HIV lab shipments to supported countries. In addition, the data set provides the commodity pricing and associated supply chain expenses necessary to move the commodities to countries for use. The dataset has similar fields to the Global Fund's Price, Quality and Reporting (PQR) data. PEPFAR and the Global Fund represent the two largest procurers of HIV health commodities. This dataset, when analyzed in conjunction with the PQR data, provides a more complete picture of global spending on specific health commodities. The data are particularly valuable for understanding ranges and trends in pricing as well as volumes delivered by country. The US Government believes this data will help stakeholders make better, data-driven decisions. Care should be taken to consider contextual factors when using the database. Conclusions related to costs associated with moving specific line items or products to specific countries and lead times by product/country will not be accurate.

    --- Original source retains full ownership of the source dataset ---

  14. T

    GDP by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). GDP by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=asia
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  15. T

    GDP by Country in AFRICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). GDP by Country in AFRICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=africa
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  16. m

    Dataset Validation of the Indonesian Version of the Student-Teacher...

    • data.mendeley.com
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MINT HUSEN RAYA ADITAMA (2024). Dataset Validation of the Indonesian Version of the Student-Teacher Relationship Scale: Rasch Model [Dataset]. http://doi.org/10.17632/b4byp3rn7j.1
    Explore at:
    Dataset updated
    Nov 12, 2024
    Authors
    MINT HUSEN RAYA ADITAMA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    For over five decades since attachment theory was first introduced by John Bowlby (1969), it has garnered substantial academic interest, including its application to student-teacher relationships. Various efforts have been made to assess student-teacher relationships, one of which is the development of the Student-Teacher Relationship Scale (STRS). This scale was originally developed by Pianta & Nimetz, (2001) to assess teachers' closeness with students from preschool through third grade. In this scale, the student-teacher relationship is linked to three dimensions of attachment: closeness, conflict, and dependency. Over time, several academics have examined and revalidated Pianta & Nimetz's STRS across different relationships and cultural settings. For example, Koomen et al., (2012) assessed teachers' perspectives on their relationships with students aged 3-12, specifically measuring the dimensions of closeness, conflict, and dependency among teachers and students in the Netherlands by adding additional items to the dependency indicator. However, previous studies have predominantly developed instruments limited to measurements based on teachers’ perspectives within elementary education settings. This highlights a substantial need for further research to re-examine the factor structure and validity of this measurement tool from another perspective—that of middle school students. As the study of student-teacher relationships progresses, there remains a lack of suitable instruments for use in Indonesia, and few studies specifically address student-teacher relationships, such as Mint Husen Raya et al., (2023). Additionally, it is essential to test the validity of STRS in higher age groups, particularly within the context of Indonesian middle school culture, considering that Indonesia is an archipelagic country with the world’s fourth-largest population (>275 million) and diverse ethnicities and cultures across its regions. Therefore, the primary aim of this study is to adopt and validate the STRS by Koomen et al., (2012) through Rasch Model analysis on a sample of Indonesian middle school students. The study will test the scale based on measurements of age, gender, and ethnicity, and adapt it from a teacher's perspective to a student's perspective. Key analyses will include checking for misfit items, internal consistency reliability, and separation indices, as well as unidimensionality and local dependency, item and person measures, item bias through DIF analysis, and rating scale diagnostics. Finally, we will present a comprehensive correlation between our scale (STRS-Student) and similar scales developed by other academics. An additional objective is to popularize and disseminate this scale throughout Indonesia.

  17. g

    The PRIMAP-hist national historical emissions time series (1850-2015)

    • dataservices.gfz-potsdam.de
    Updated 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes Gütschow; Louise Jeffery; Robert Gieseke; Ronja Gebel; Johannes Gütschow; Louise Jeffery; Robert Gieseke; Ronja Gebel (2018). The PRIMAP-hist national historical emissions time series (1850-2015) [Dataset]. http://doi.org/10.5880/pik.2018.003
    Explore at:
    Dataset updated
    2018
    Dataset provided by
    GFZ Data Services
    datacite
    Authors
    Johannes Gütschow; Louise Jeffery; Robert Gieseke; Ronja Gebel; Johannes Gütschow; Louise Jeffery; Robert Gieseke; Ronja Gebel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    This is an updated version of Gütschow et al. (2017, http://doi.org/10.5880/pik.2017.001). Please use this version which incorporates updates to input data as well as correction of errors in the original dataset and its first update. For a detailed description of the changes please consult the CHANGELOG included in the data description document. This dataset combines several published datasets to create a comprehensive set of greenhouse gas emission pathways for every country and Kyoto gas covering the years 1850 to 2015 and all UNFCCC (United Nations Framework Convention on Climate Change) member states as well as most non-UNFCCC territories. The data resolves the main IPCC (Intergovernmental Panel on Climate Change) 1996 categories. For CO2‚‚ from energy and industry time series for subsectors are available. List of datasets included in this data publication:(1) PRIMAP-hist_v1.2_14-Dec-2017.csv: With numerical extrapolation of all time series to 2014. (only in .zip folder)(2) PRIMAP-hist_no_extrapolation_v1.2_14-Dec-2017.csv: Without numerical extrapolation of missing values. (only in .zip folder)(3) PRIMAP-hist_v1.2_data-format-description: including CHANGELOG(4) PRIMAP-hist_v1.2_updated_figures: updated figures of those published in Gütschow et al. (2016)(all files are also included in the .zip folder) When using this dataset or one of its updates, please also cite the data description article (Gütschow et al., 2016, http://doi.org/10.5194/essd-8-571-2016) to which this data are supplement to. Please consider also citing the relevant original sources. SOURCES:- UNFCCC National Communications and National Inventory Reports for developing countries: UNFCCC (2017B)- UNFCCC Biennal Update Reports: UNFCCC (2016)- UNFCCC Common Reporting Format (CRF): UNFCCC (2016), UNFCCC (2017)- BP Statistical Review of World Energy: BP (2017)- CDIAC: Boden et al. (2017)- EDGAR versions 4.2 and 4.2 FT2010: JRC and PBL (2011), Olivier and Janssens-Maenhout (2012)- FAOSTAT database: Food and Agriculture Organization of the United Nations (2016)- Houghton land use CO2: Houghton (2008)- RCP historical data: Meinshausen et al. (2011)- EDGAR-HYDE 1.4: Van Aardenne et al. (2001), Olivier and Berdowski (2001)- HYDE land cover data: Klein Goldewijk et al. (2010), Klein Goldewijk et al. (2011)- SAGE Global Potential Vegetation Dataset: Ramankutty and Foley (1999)- FAO Country Boundaries: Food and Agriculture Organization of the United Nations (2015)

  18. The global gender gap index 2025

    • statista.com
    Updated Jul 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). The global gender gap index 2025 [Dataset]. https://www.statista.com/statistics/244387/the-global-gender-gap-index/
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    The global gender gap index benchmarks national gender gaps on economic, political, education, and health-based criteria. In 2025, the country offering the most gender equal conditions was Iceland, with a score of 0.93. Overall, the Nordic countries make up 3 of the 5 most gender equal countries worldwide. The Nordic countries are known for their high levels of gender equality, including high female employment rates and evenly divided parental leave. Sudan is the second-least gender equal country Pakistan is found on the other end of the scale, ranked as the least gender equal country in the world. Conditions for civilians in the North African country have worsened significantly after a civil war broke out in April 2023. Especially girls and women are suffering and have become victims of sexual violence. Moreover, nearly 9 million people are estimated to be at acute risk of famine. The Middle East and North Africa have the largest gender gap Looking at the different world regions, the Middle East and North Africa have the largest gender gap as of 2023, just ahead of South Asia. Moreover, it is estimated that it will take another 152 years before the gender gap in the Middle East and North Africa is closed. On the other hand, Europe has the lowest gender gap in the world.

  19. Biggest Netflix libraries in the world 2024

    • statista.com
    • ai-chatbox.pro
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Biggest Netflix libraries in the world 2024 [Dataset]. https://www.statista.com/statistics/1013571/netflix-library-size-worldwide/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2024
    Area covered
    World
    Description

    Industry data revealed that Slovakia had the most extensive Netflix media library worldwide as of July 2024, with over 8,500 titles available on the platform. Interestingly, the top 10 ranking was spearheaded by European countries. Where do you get the most bang for your Netflix buck? In February 2024, Liechtenstein and Switzerland were the countries with the most expensive Netflix subscription rates. Viewers had to pay around 21.19 U.S. dollars per month for a standard subscription. Subscribers in these countries could choose from between around 6,500 and 6,900 titles. On the other end of the spectrum, Pakistan, Egypt, and Nigeria are some of the countries with the cheapest Netflix subscription costs at around 2.90 to 4.65 U.S. dollars per month. Popular content on Netflix While viewing preferences can differ across countries and regions, some titles have proven particularly popular with international audiences. As of mid-2024, "Red Notice" and "Don't Look Up" were the most popular English-language movies on Netflix, with over 230 million views in its first 91 days available on the platform. Meanwhile, "Troll" ranks first among the top non-English language Netflix movies of all time. The monster film has amassed 103 million views on Netflix, making it the most successful Norwegian-language film on the platform to date.

  20. d

    The Marshall Project: COVID Cases in Prisons

    • data.world
    csv, zip
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). The Marshall Project: COVID Cases in Prisons [Dataset]. https://data.world/associatedpress/marshall-project-covid-cases-in-prisons
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Apr 6, 2023
    Authors
    The Associated Press
    Time period covered
    Jul 31, 2019 - Aug 1, 2021
    Description

    Overview

    The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.

    Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.

    In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.

    This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.

    Methodology and Caveats

    The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.

    Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.

    The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.

    To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.

    To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.

    To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.

    As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.

    Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on parole. We removed these tests and cases for prisoners from the data prior to July 28. The staff cases remain.

    About the Data

    There are four tables in this data:

    • covid_prison_cases.csv contains weekly time series data on tests, infections and deaths in prisons. The first dates in the table are on March 26. Any questions that a prison agency could not or would not answer are left blank.

    • prison_populations.csv contains snapshots of the population of people incarcerated in each of these prison systems for whom data on COVID testing and cases are available. This varies by state and may not always be the entire number of people incarcerated in each system. In some states, it may include other populations, such as those on parole or held in state-run jails. This data is primarily for use in calculating rates of testing and infection, and we would not recommend using these numbers to compare the change in how many people are being held in each prison system.

    • staff_populations.csv contains a one-time, recent snapshot of the headcount of workers for each prison agency, collected as close to April 15 as possible.

    • covid_prison_rates.csv contains the rates of cases and deaths for prisoners. There is one row for every state and federal prison system and an additional row with the National totals.

    Queries

    The Associated Press and The Marshall Project have created several queries to help you use this data:

    Get your state's prison COVID data: Provides each week's data from just your state and calculates a cases-per-100000-prisoners rate, a deaths-per-100000-prisoners rate, a cases-per-100000-workers rate and a deaths-per-100000-workers rate here

    Rank all systems' most recent data by cases per 100,000 prisoners here

    Find what percentage of your state's total cases and deaths -- as reported by Johns Hopkins University -- occurred within the prison system here

    Attribution

    In stories, attribute this data to: “According to an analysis of state prison cases by The Marshall Project, a nonprofit investigative newsroom dedicated to the U.S. criminal justice system, and The Associated Press.”

    Contributors

    Many reporters and editors at The Marshall Project and The Associated Press contributed to this data, including: Katie Park, Tom Meagher, Weihua Li, Gabe Isman, Cary Aspinwall, Keri Blakinger, Jake Bleiberg, Andrew R. Calderón, Maurice Chammah, Andrew DeMillo, Eli Hager, Jamiles Lartey, Claudia Lauer, Nicole Lewis, Humera Lodhi, Colleen Long, Joseph Neff, Michelle Pitcher, Alysia Santo, Beth Schwartzapfel, Damini Sharma, Colleen Slevin, Christie Thompson, Abbie VanSickle, Adria Watson, Andrew Welsh-Huggins.

    Questions

    If you have questions about the data, please email The Marshall Project at info+covidtracker@themarshallproject.org or file a Github issue.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp

GDP by Country Dataset

GDP by Country Dataset (2025)

Explore at:
268 scholarly articles cite this dataset (View in Google Scholar)
csv, json, xml, excelAvailable download formats
Dataset updated
Jun 29, 2011
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2025
Area covered
World
Description

This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Search
Clear search
Close search
Google apps
Main menu