Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in China expanded 5.20 percent in the second quarter of 2025 over the same quarter of the previous year. This dataset provides - China GDP Annual Growth Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides key economic indicators for five of the world's largest economies, based on their nominal Gross Domestic Product (GDP) in 2022. It includes the GDP values, population, GDP growth rates, per capita GDP, and each country's share of the global economy.
Columns: Country: Name of the country. GDP (nominal, 2022): The total nominal GDP in 2022, represented in USD. GDP (abbrev.): The abbreviated GDP in trillions of USD. GDP growth: The percentage growth in GDP compared to the previous year. Population: Total population of each country in 2022. GDP per capita: The GDP per capita, representing average economic output per person in USD. Share of world GDP: The percentage of global GDP contributed by each country. Key Highlights: The dataset includes some of the largest global economies, such as the United States, China, Japan, Germany, and India. The data can be used to analyze the economic standing of countries in terms of overall GDP and per capita wealth. It offers insights into the relative growth rates and population sizes of these leading economies. This dataset is ideal for exploring economic trends, performing country-wise comparisons, or studying the relationship between population size and GDP growth.
Explore real GDP growth projections dataset, including insights into the impact of COVID-19 on economic trends. This dataset covers countries such as Spain, Australia, France, Italy, Brazil, and more.
growth rate, Real, COVID-19, GDP
Spain, Australia, France, Italy, Brazil, Argentina, United Kingdom, United States, Canada, Russia, Turkiye, World, China, Mexico, Korea, India, Saudi Arabia, South Africa, Germany, Indonesia, JapanFollow data.kapsarc.org for timely data to advance energy economics research..Source: OECD Economic Outlook database.- India projections are based on fiscal years, starting in April. The European Union is a full member of the G20, but the G20 aggregate only includes countries that are also members in their own right. Spain is a permanent invitee to the G20. World and G20 aggregates use moving nominal GDP weights at purchasing power parities. Difference in percentage points, based on rounded figures.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in India expanded 7.40 percent in the first quarter of 2025 over the same quarter of the previous year. This dataset provides - India GDP Annual Growth Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
At a time when the Indian economy is in full swing and the growth rate has been declining since 2014, the picture is that Covid 19 has reached the economy by early 2020. Corona, a contagious disease that originated in China, is now spreading all over the world and across India. The disease has infected over 41,94,728 people worldwide to date. And you see it growing steadily. Developed as well as developing countries have not escaped its effects. The result of this Covid 19 is a question mark over human existence. The question is how to sustain the means of survival. The development to date has been hampered by Covid 19. It will create new solutions on how to sustain the development, but it will be difficult and laborious to fill the gaps that have been reached. The lockdown accepted by India has had an impact on the entire economy. In this, many global organizations have indicated that India's growth rate will be 0%.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Explore the Saudi Arabia World Development Indicators dataset , including key indicators such as Access to clean fuels, Adjusted net enrollment rate, CO2 emissions, and more. Find valuable insights and trends for Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, and India.
Indicator, Access to clean fuels and technologies for cooking, rural (% of rural population), Access to electricity (% of population), Adjusted net enrollment rate, primary, female (% of primary school age children), Adjusted net national income (annual % growth), Adjusted savings: education expenditure (% of GNI), Adjusted savings: mineral depletion (current US$), Adjusted savings: natural resources depletion (% of GNI), Adjusted savings: net national savings (current US$), Adolescents out of school (% of lower secondary school age), Adolescents out of school, female (% of female lower secondary school age), Age dependency ratio (% of working-age population), Agricultural methane emissions (% of total), Agriculture, forestry, and fishing, value added (current US$), Agriculture, forestry, and fishing, value added per worker (constant 2015 US$), Alternative and nuclear energy (% of total energy use), Annualized average growth rate in per capita real survey mean consumption or income, total population (%), Arms exports (SIPRI trend indicator values), Arms imports (SIPRI trend indicator values), Average working hours of children, working only, ages 7-14 (hours per week), Average working hours of children, working only, male, ages 7-14 (hours per week), Cause of death, by injury (% of total), Cereal yield (kg per hectare), Changes in inventories (current US$), Chemicals (% of value added in manufacturing), Child employment in agriculture (% of economically active children ages 7-14), Child employment in manufacturing, female (% of female economically active children ages 7-14), Child employment in manufacturing, male (% of male economically active children ages 7-14), Child employment in services (% of economically active children ages 7-14), Child employment in services, female (% of female economically active children ages 7-14), Children (ages 0-14) newly infected with HIV, Children in employment, study and work (% of children in employment, ages 7-14), Children in employment, unpaid family workers (% of children in employment, ages 7-14), Children in employment, wage workers (% of children in employment, ages 7-14), Children out of school, primary, Children out of school, primary, male, Claims on other sectors of the domestic economy (annual growth as % of broad money), CO2 emissions (kg per 2015 US$ of GDP), CO2 emissions (kt), CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion), CO2 emissions from transport (% of total fuel combustion), Communications, computer, etc. (% of service exports, BoP), Condom use, population ages 15-24, female (% of females ages 15-24), Container port traffic (TEU: 20 foot equivalent units), Contraceptive prevalence, any method (% of married women ages 15-49), Control of Corruption: Estimate, Control of Corruption: Percentile Rank, Upper Bound of 90% Confidence Interval, Control of Corruption: Standard Error, Coverage of social insurance programs in 4th quintile (% of population), CPIA building human resources rating (1=low to 6=high), CPIA debt policy rating (1=low to 6=high), CPIA policies for social inclusion/equity cluster average (1=low to 6=high), CPIA public sector management and institutions cluster average (1=low to 6=high), CPIA quality of budgetary and financial management rating (1=low to 6=high), CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high), Current education expenditure, secondary (% of total expenditure in secondary public institutions), DEC alternative conversion factor (LCU per US$), Deposit interest rate (%), Depth of credit information index (0=low to 8=high), Diarrhea treatment (% of children under 5 who received ORS packet), Discrepancy in expenditure estimate of GDP (current LCU), Domestic private health expenditure per capita, PPP (current international $), Droughts, floods, extreme temperatures (% of population, average 1990-2009), Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative), Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least completed lower secondary, population 25+, female (%) (cumulative), Educational attainment, at least completed primary, population 25+ years, total (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative), Electricity production from coal sources (% of total), Electricity production from nuclear sources (% of total), Employers, total (% of total employment) (modeled ILO estimate), Employment in industry (% of total employment) (modeled ILO estimate), Employment in services, female (% of female employment) (modeled ILO estimate), Employment to population ratio, 15+, male (%) (modeled ILO estimate), Employment to population ratio, ages 15-24, total (%) (national estimate), Energy use (kg of oil equivalent per capita), Export unit value index (2015 = 100), Exports of goods and services (% of GDP), Exports of goods, services and primary income (BoP, current US$), External debt stocks (% of GNI), External health expenditure (% of current health expenditure), Female primary school age children out-of-school (%), Female share of employment in senior and middle management (%), Final consumption expenditure (constant 2015 US$), Firms expected to give gifts in meetings with tax officials (% of firms), Firms experiencing losses due to theft and vandalism (% of firms), Firms formally registered when operations started (% of firms), Fixed broadband subscriptions, Fixed telephone subscriptions (per 100 people), Foreign direct investment, net outflows (% of GDP), Forest area (% of land area), Forest area (sq. km), Forest rents (% of GDP), GDP growth (annual %), GDP per capita (constant LCU), GDP per unit of energy use (PPP $ per kg of oil equivalent), GDP, PPP (constant 2017 international $), General government final consumption expenditure (current LCU), GHG net emissions/removals by LUCF (Mt of CO2 equivalent), GNI growth (annual %), GNI per capita (constant LCU), GNI, PPP (current international $), Goods and services expense (current LCU), Government Effectiveness: Percentile Rank, Government Effectiveness: Percentile Rank, Lower Bound of 90% Confidence Interval, Government Effectiveness: Standard Error, Gross capital formation (annual % growth), Gross capital formation (constant 2015 US$), Gross capital formation (current LCU), Gross fixed capital formation, private sector (% of GDP), Gross intake ratio in first grade of primary education, male (% of relevant age group), Gross intake ratio in first grade of primary education, total (% of relevant age group), Gross national expenditure (current LCU), Gross national expenditure (current US$), Households and NPISHs Final consumption expenditure (constant LCU), Households and NPISHs Final consumption expenditure (current US$), Households and NPISHs Final consumption expenditure, PPP (constant 2017 international $), Households and NPISHs final consumption expenditure: linked series (current LCU), Human capital index (HCI) (scale 0-1), Human capital index (HCI), male (scale 0-1), Immunization, DPT (% of children ages 12-23 months), Import value index (2015 = 100), Imports of goods and services (% of GDP), Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24), Incidence of HIV, all (per 1,000 uninfected population), Income share held by highest 20%, Income share held by lowest 20%, Income share held by third 20%, Individuals using the Internet (% of population), Industry (including construction), value added (constant LCU), Informal payments to public officials (% of firms), Intentional homicides, male (per 100,000 male), Interest payments (% of expense), Interest rate spread (lending rate minus deposit rate, %), Internally displaced persons, new displacement associated with conflict and violence (number of cases), International tourism, expenditures for passenger transport items (current US$), International tourism, expenditures for travel items (current US$), Investment in energy with private participation (current US$), Labor force participation rate for ages 15-24, female (%) (modeled ILO estimate), Development
Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, India Follow data.kapsarc.org for timely data to advance energy economics research..
Success.ai’s Import Export Data for Import, Export & Trade Professionals in Asia delivers a comprehensive dataset tailored for businesses aiming to connect with key players in Asia’s dynamic trade industry. Covering professionals involved in import/export operations, international logistics, and supply chain management, this dataset provides verified contact details, firmographic insights, and actionable professional data.
With access to over 700 million verified global profiles and 70 million business datasets, Success.ai ensures your outreach, market research, and trade strategies are powered by accurate, continuously updated, and AI-validated data. Supported by our Best Price Guarantee, this solution is essential for navigating the complexities of global trade in Asia.
Why Choose Success.ai’s Import Export Data?
Verified Contact Data for Effective Engagement
Comprehensive Coverage of Asian Trade Markets
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Professional Profiles in Import/Export and Logistics
Firmographic and Geographic Insights
Advanced Filters for Precision Campaigns
AI-Driven Enrichment
Strategic Use Cases:
Sales and Business Development
Market Research and Competitive Analysis
Partnership Development and Trade Collaboration
Recruitment and Talent Acquisition
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2021 PREDICT Dataset updates and substitutes the 2020 PREDICT Dataset.
PREDICT includes statistics on ICT industries and their R&D in Europe since 2006. The project covers major world competitors including 40 advanced and emerging countries - the EU28 plus Norway, Russia and Switzerland in Europe, Canada, the United States and Brazil in the Americas, China, India, Japan, South Korea and Taiwan in Asia, and Australia -. The dataset provides indicators in a wide variety of topics, including value added, employment, labour productivity and business R&D expenditure (BERD), distinguishing fine grain economic activities in ICT industries (up to 22 individual activities, 14 of which at the class level, i.e. at 4 digits in the ISIC/NACE classification), media and content industries (15 activities, 11 of them at 4 digit level) and at a higher level of aggregation for all the other industries in the economy. It also produces data on Government financing of R&D in ICTs, and total R&D expenditure. Nowcasting of more relevant data in these domains is also performed until a year before the reference date, while time series go back to 1995.
ICTs determine competitive power in the knowledge economy. The ICT sector alone originates almost one fourth of total Business expenditure in R&D (BERD) for the aggregate of the 40 economies under scrutiny in the project. It also has a huge enabling role for innovation in other technological domains. This is reflected at the EU policy level, where the Digital Agenda for Europe in 2010 was identified as one of the seven pillars of the Europe 2020 Strategy for growth in the Union; and the achievement of a Digital Single Market (DSM) is one of the 10 political priorities set by the Commission since 2015.
Success.ai’s Fashion & Apparel Data for Apparel, Fashion & Luxury Goods Professionals in Asia provides a robust dataset tailored for businesses seeking to connect with key players in Asia’s thriving fashion and luxury goods industries. Covering roles such as brand managers, designers, retail executives, and supply chain leaders, this dataset includes verified contact details, professional insights, and actionable business data.
With access to over 700 million verified global profiles and 130 million profiles focused on Asia, Success.ai ensures your outreach, marketing, and business development strategies are supported by accurate, continuously updated, and AI-validated data. Backed by our Best Price Guarantee, this solution positions you to succeed in Asia’s competitive and ever-growing fashion markets.
Why Choose Success.ai’s Fashion & Apparel Data?
Verified Contact Data for Precision Outreach
Comprehensive Coverage of Asian Fashion Professionals
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive Professional Profiles
Advanced Filters for Precision Campaigns
Industry and Regional Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing Campaigns and Brand Expansion
Product Development and Consumer Insights
Partnership Development and Retail Collaboration
Market Research and Competitive Analysis
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.
One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.
Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.
The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.
As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.
Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.
The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.
Image data is critical for computer vision application
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Big Ten Countries include Argentina, Brazil, China, India, Indonesia, Mexico, Poland, South Africa, South Korea, and Turkey. The annual data for the years 2002-2019 was used. Growth Rate (GR), the literature’s basic economic variable, is selected as the dependent variable. As for the independent variable, the “Global Terror Index (GTI)” was used to represent the terror indicator. Besides, due to their effect on the growth rate, the ratio of Foreign Direct Investment (FDI) to the Gross Domestic Product (GDP), and the ratio of External Balance (EB) to Gross Domestic Product (GDP) are included in the model as the control variables.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The enterprise database market size is projected to see significant growth over the coming years, with a valuation of USD 91.5 billion in 2023, and is expected to reach USD 171.1 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.2% during the forecast period. This growth is driven by the increasing demand for efficient data management solutions across various industries and the rise in digital transformation initiatives that require robust database systems. The growth factors include advancements in cloud computing, the growing need for real-time data analytics, and the integration of artificial intelligence and machine learning in data management.
One of the primary growth factors in the enterprise database market is the increasing adoption of cloud-based solutions. Organizations are rapidly moving towards cloud environments due to their scalability, cost-effectiveness, and flexibility. Cloud databases offer better accessibility and reduced infrastructure costs, making them an attractive option for businesses of all sizes. Additionally, with the proliferation of data generated from various sources such as social media, IoT devices, and online transactions, the need for scalable and efficient data storage solutions is more critical than ever. Cloud-based databases provide the requisite infrastructure to handle this data surge efficiently, further propelling market growth.
Another significant driver for the enterprise database market is the rise of big data analytics. As businesses strive to harness the power of data for insights and decision-making, the demand for robust database systems capable of handling large volumes of data has intensified. Enterprises are looking for databases that not only store data but also enable advanced analytics to derive actionable insights. This trend is particularly prevalent in industries like retail, healthcare, and BFSI, where data-driven decisions can lead to improved customer experiences, better risk management, and optimized operations. The integration of artificial intelligence and machine learning with enterprise databases is further enhancing their capabilities, allowing for predictive analytics and automating data processing tasks.
The growing emphasis on data security and compliance is also contributing to the expansion of the enterprise database market. With the increasing incidences of data breaches and stringent regulatory requirements, organizations are prioritizing secure database solutions that offer robust data protection measures. Databases with built-in security features such as encryption, access control, and regular auditing are in high demand. Furthermore, industry-specific compliance standards like GDPR in Europe and HIPAA in the US are driving businesses to invest in databases that ensure compliance and mitigate the risk of penalties, thus fueling market growth.
Regionally, North America is expected to dominate the enterprise database market due to the presence of major technology companies and early adoption of advanced technologies. The Asia Pacific region, however, is anticipated to witness the fastest growth rate during the forecast period, driven by rapid industrialization, the proliferation of SMEs, and increasing investments in digital infrastructure by countries like China, India, and Japan. The growing focus on smart cities and digital transformation initiatives in these countries is further boosting the demand for enterprise databases. Europe also holds a significant share of the market, with widespread adoption of cloud technologies and heightened focus on data privacy and security driving market expansion.
Industrial Databases play a crucial role in the enterprise database market, particularly as industries undergo digital transformation. These databases are designed to manage and process large volumes of industrial data generated from various sources such as manufacturing processes, supply chain operations, and IoT devices. The ability to handle real-time data analytics and provide actionable insights is essential for industries aiming to optimize operations and enhance productivity. As industries continue to adopt smart manufacturing practices, the demand for industrial databases that offer scalability, reliability, and integration with advanced technologies like AI and machine learning is on the rise. This trend is expected to contribute significantly to the growth of the enterprise database market, as businesses seek to leverage data for competitive advantage and operational efficiency.
<br /https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global operational database management system market size is projected to expand from approximately USD 52.5 billion in 2023 to USD 112.3 billion by 2032, exhibiting a compound annual growth rate (CAGR) of around 8.7%. This significant growth is driven by the increasing demand for real-time data processing and the exponential rise in data generation across various industry verticals. As organizations increasingly focus on leveraging data to gain a competitive advantage, there is a heightened need for efficient database management systems that can handle complex queries and ensure seamless data flow. The burgeoning trend of digital transformation across industries is further driving the adoption of operational database management systems, thereby fueling market growth.
One of the primary growth factors contributing to the expansion of the operational database management system market is the rapid proliferation of big data. As businesses across the globe generate massive volumes of diverse data, there is an urgent requirement for robust systems that can manage and process this data efficiently. Operational database management systems are designed to handle large-scale data operations, providing businesses with the ability to perform complex data transactions reliably. The need for real-time analytics is another critical driver, as companies seek to make data-driven decisions swiftly and accurately. This demand for immediate insights is pushing organizations to invest in advanced database management solutions that support real-time data processing capabilities.
Technological advancements are also playing a significant role in the growth of the operational database management system market. Innovations such as artificial intelligence (AI) and machine learning (ML) are being integrated into database management systems, enhancing their functionalities and efficiency. AI-powered database systems are increasingly being adopted for their ability to automate data management tasks, reduce human intervention, and improve data accuracy. Similarly, cloud-based database solutions are witnessing a surge in demand due to their scalability, cost-effectiveness, and flexibility. These technological developments are not only enhancing the performance of database systems but are also expanding their application across various sectors, thereby driving market growth.
Another critical factor propelling the market is the growing emphasis on data security and compliance. With data breaches becoming increasingly frequent and severe, organizations are investing heavily in secure database management systems to protect their sensitive information. Regulatory frameworks across different regions mandate stringent data protection measures, compelling companies to adopt advanced database solutions that comply with these regulations. This focus on data security is encouraging the development and deployment of operational database management systems that offer robust security features, contributing significantly to market growth.
Oracle Services play a crucial role in the operational database management system market by providing comprehensive solutions that cater to the diverse needs of businesses. As organizations strive to manage their data more efficiently, Oracle Services offer a range of tools and technologies designed to enhance data processing capabilities. These services are particularly valuable for businesses looking to integrate advanced analytics and AI into their database systems, enabling them to gain deeper insights and improve decision-making processes. By offering scalable and secure solutions, Oracle Services help organizations navigate the complexities of modern data environments, ensuring that they can handle large volumes of data with ease. This focus on innovation and adaptability is a key factor driving the adoption of Oracle Services in the operational database management system market.
In terms of regional outlook, North America dominates the operational database management system market due to the presence of numerous key players and the early adoption of advanced technologies. The region's strong emphasis on data-driven strategies and its robust IT infrastructure further support market growth. Meanwhile, the Asia Pacific region is expected to witness the fastest growth during the forecast period, primarily driven by the rapid digitization and industrialization in countries like China and India. The increasing investments in IT infrastructure and the growing demand for real-ti
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The AI training dataset market is experiencing robust growth, driven by the increasing adoption of artificial intelligence across diverse sectors. The market's expansion is fueled by the urgent need for high-quality data to train sophisticated AI models capable of handling complex tasks. Key application areas, such as autonomous vehicles in the automotive industry, advanced medical diagnosis in healthcare, and personalized experiences in retail and e-commerce, are significantly contributing to this market's upward trajectory. The prevalence of text, image/video, and audio data types further diversifies the market, offering opportunities for specialized dataset providers. While the market faces challenges like data privacy concerns and the high cost of data annotation, the overall trajectory remains positive, with a projected Compound Annual Growth Rate (CAGR) exceeding 20% for the forecast period (2025-2033). This growth is further supported by advancements in deep learning techniques that demand increasingly larger and more diverse datasets for optimal performance. Leading companies like Google, Amazon, and Microsoft are actively investing in this space, expanding their dataset offerings and fostering competition within the market. Furthermore, the emergence of specialized data annotation providers caters to the specific needs of various industries, ensuring accurate and reliable data for AI model development. The geographic distribution of the market reveals strong presence in North America and Europe, driven by early adoption of AI technologies and the presence of major technology players. However, Asia Pacific is projected to witness significant growth in the coming years, propelled by increasing digitalization and a burgeoning AI ecosystem in countries like China and India. Government initiatives promoting AI development in various regions are also expected to stimulate demand for high-quality training datasets. While challenges related to data security and ethical considerations remain, the long-term outlook for the AI training dataset market is exceptionally promising, fueled by the continued evolution of artificial intelligence and its increasing integration into various aspects of modern life. The market segmentation by application and data type allows for granular analysis and targeted investments for businesses operating in this rapidly expanding sector.
Graph Database Market Size 2025-2029
The graph database market size is forecast to increase by USD 11.24 billion at a CAGR of 29% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing popularity of open knowledge networks and the rising demand for low-latency query processing. These trends reflect the growing importance of real-time data analytics and the need for more complex data relationships to be managed effectively. However, the market also faces challenges, including the lack of standardization and programming flexibility. These obstacles require innovative solutions from market participants to ensure interoperability and ease of use for businesses looking to adopt graph databases.
Companies seeking to capitalize on market opportunities must focus on addressing these challenges while also offering advanced features and strong performance to differentiate themselves. Effective navigation of these dynamics will be crucial for success in the evolving graph database landscape. Compliance requirements and data privacy regulations drive the need for security access control and data anonymization methods. Graph databases are deployed in both on-premises data centers and cloud regions, providing flexibility for businesses with varying IT infrastructures.
What will be the Size of the Graph Database Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic market, security and data management are increasingly prioritized. Authorization mechanisms and encryption techniques ensure data access control and confidentiality. Query optimization strategies and indexing enhance query performance, while data anonymization methods protect sensitive information. Fault tolerance mechanisms and data governance frameworks maintain data availability and compliance with regulations. Data quality assessment and consistency checks address data integrity issues, and authentication protocols secure concurrent graph updates. This model is particularly well-suited for applications in social networks, recommendation engines, and business processes that require real-time analytics and visualization.
Graph database tuning and monitoring optimize hardware resource usage and detect performance bottlenecks. Data recovery procedures and replication methods ensure data availability during disasters and maintain data consistency. Data version control and concurrent graph updates address versioning and conflict resolution challenges. Data anomaly detection and consistency checks maintain data accuracy and reliability. Distributed transactions and data recovery procedures ensure data consistency across nodes in a distributed graph database system.
How is this Graph Database Industry segmented?
The graph database industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
End-user
Large enterprises
SMEs
Type
RDF
LPG
Solution
Native graph database
Knowledge graph engines
Graph processing engines
Graph extension
Geography
North America
US
Canada
Europe
France
Germany
Italy
Spain
UK
APAC
China
India
Japan
Rest of World (ROW)
By End-user Insights
The Large enterprises segment is estimated to witness significant growth during the forecast period. In today's business landscape, large enterprises are turning to graph databases to manage intricate data relationships and improve decision-making processes. Graph databases offer unique advantages over traditional relational databases, enabling superior agility in modeling and querying interconnected data. These systems are particularly valuable for applications such as fraud detection, supply chain optimization, customer 360 views, and network analysis. Graph databases provide the scalability and performance required to handle large, dynamic datasets and uncover hidden patterns and insights in real time. Their support for advanced analytics and AI-driven applications further bolsters their role in enterprise digital transformation strategies. Additionally, their flexibility and integration capabilities make them well-suited for deployment in hybrid and multi-cloud environments.
Graph databases offer various features that cater to diverse business needs. Data lineage tracking ensures accountability and transparency, while graph analytics engines provide advanced insights. Graph database benchmarking helps organizations evaluate performance, and relationship property indexing streamlines data access. Node relationship management facilitates complex data modeling, an
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The OLAP (Online Analytical Processing) Database Systems market size is projected to grow significantly from $10.3 billion in 2023 to a remarkable $21.6 billion by 2032, at an impressive CAGR of 8.4%. This growth is primarily driven by the increasing need for sophisticated data analytics to support business intelligence and decision-making processes. Organizations across various sectors are increasingly recognizing the value of OLAP systems in transforming vast amounts of raw data into actionable insights, thereby fueling the market’s expansion.
One of the major growth factors for the OLAP Database Systems market is the increasing volume of data being generated globally. With the rise of IoT devices, social media, and digital transactions, the amount of data being produced is growing exponentially. Businesses need robust systems to analyze this data efficiently and derive meaningful insights. OLAP systems provide the required analytical capabilities to handle large datasets, making them indispensable in today’s data-driven world. Additionally, advancements in machine learning and AI are enhancing the capabilities of OLAP systems, further driving their adoption.
Another key driver is the growing importance of business intelligence and data-driven decision-making in organizations. In a competitive business environment, companies are leveraging OLAP systems to gain a comprehensive understanding of their operations, customer behavior, and market trends. These insights help in strategic planning, identifying new opportunities, and optimizing operations. As a result, the demand for OLAP systems is witnessing a substantial increase across various industry verticals, including BFSI, healthcare, retail, and manufacturing.
Moreover, the shift towards cloud-based solutions is significantly contributing to the market growth. Cloud-based OLAP systems offer several advantages, such as scalability, cost-effectiveness, and ease of deployment. They eliminate the need for significant upfront investments in hardware and infrastructure, making advanced analytics accessible to small and medium enterprises (SMEs) as well. The flexibility and scalability offered by cloud-based OLAP systems are encouraging more organizations to migrate their analytics operations to the cloud, thereby driving market growth.
Regionally, North America is expected to dominate the OLAP Database Systems market during the forecast period, followed by Europe and Asia Pacific. The presence of major technology companies and high adoption rates of advanced analytics solutions are the key factors contributing to the market's growth in North America. In contrast, the Asia Pacific region is anticipated to exhibit the highest growth rate due to rapid digitalization, increasing internet penetration, and the growing adoption of emerging technologies in countries like China, India, and Japan.
The OLAP Database Systems market can be segmented by component into software, hardware, and services. The software segment holds the largest market share due to the extensive use of OLAP software for data modeling, reporting, and analysis. OLAP software solutions are crucial for businesses to extract meaningful insights from their data and support decision-making processes. These solutions are continuously evolving with the integration of advanced features like real-time analytics, predictive modeling, and AI-driven insights, making them indispensable tools for modern enterprises.
The hardware segment, although smaller compared to software, is also significant. It includes servers, storage devices, and networking equipment essential for the deployment of OLAP systems. With the growing adoption of big data and analytics, there is an increasing demand for robust hardware infrastructure to support these complex analytical processes. Innovations in hardware technology, such as high-performance computing and the development of more efficient storage systems, are also contributing to the growth of this segment.
The services segment is expected to witness substantial growth during the forecast period. This segment includes consulting, implementation, and maintenance services. As organizations adopt OLAP systems, they require expertise for smooth implementation and integration with their existing IT infrastructure. Consulting services help businesses identify their specific needs and choose the right OLAP solutions, while implementation services ensure the successful deployment of these systems. Ongoing maintenance and support services
Explore World Bank Health, Nutrition and Population Statistics dataset featuring a wide range of indicators such as School enrollment, UHC service coverage index, Fertility rate, and more from countries like Bahrain, China, India, Kuwait, Oman, Qatar, and Saudi Arabia.
School enrollment, tertiary, UHC service coverage index, Wanted fertility rate, People with basic handwashing facilities, urban population, Rural population, AIDS estimated deaths, Domestic private health expenditure, Fertility rate, Domestic general government health expenditure, Age dependency ratio, Postnatal care coverage, People using safely managed drinking water services, Unemployment, Lifetime risk of maternal death, External health expenditure, Population growth, Completeness of birth registration, Urban poverty headcount ratio, Prevalence of undernourishment, People using at least basic sanitation services, Prevalence of current tobacco use, Urban poverty headcount ratio, Tuberculosis treatment success rate, Low-birthweight babies, Female headed households, Completeness of birth registration, Urban population growth, Antiretroviral therapy coverage, Labor force, and more.
Bahrain, China, India, Kuwait, Oman, Qatar, Saudi Arabia
Follow data.kapsarc.org for timely data to advance energy economics research.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Database Design and Development Services was valued at approximately USD 15 billion in 2023, and it is projected to reach around USD 28 billion by 2032, growing at a compound annual growth rate (CAGR) of about 7.2%. This robust growth is driven by the increasing importance of data in decision-making processes, the surge in digital transformation initiatives, and the rise in the number of data-intensive applications across various industries.
The primary growth factor propelling the Database Design and Development Service market is the exponential increase in data generation. As businesses across sectors are increasingly going digital, there is a colossal amount of data being generated, which necessitates robust database solutions to manage and utilize this data effectively. Advanced database design and development services allow organizations to store, manage, and retrieve data efficiently, thereby driving demand for these services. Furthermore, the rising adoption of technologies such as Artificial Intelligence (AI), Internet of Things (IoT), and Big Data Analytics is significantly contributing to market growth as these technologies rely heavily on well-designed databases.
Another significant growth driver is the increased focus on data security and regulatory compliance. Numerous industries, such as BFSI and healthcare, demand stringent data management protocols to ensure data integrity and compliance with various regional and global regulations. Database design and development services cater to these requirements by providing customized solutions that enhance data security and ensure compliance, thus attracting more clients from regulated industries. Additionally, the growing consumer awareness regarding data privacy is pushing companies to adopt robust database solutions, further fueling market growth.
The shift towards cloud computing is also a crucial factor bolstering the Database Design and Development Service market. Organizations are increasingly adopting cloud-based database solutions due to their scalability, cost-effectiveness, and ease of access. Cloud-based databases eliminate the need for significant upfront investments in hardware and reduce the complexity of database management, making them a preferred choice for many enterprises. This trend is expected to continue, driving further growth in the market.
Regionally, North America currently dominates the Database Design and Development Service market, followed by Europe and Asia Pacific. The market in North America is driven by the presence of a large number of technology companies and high adoption of advanced technologies. Europe is witnessing steady growth, largely due to stringent data protection regulations such as GDPR. The Asia Pacific region is expected to exhibit the highest growth rate during the forecast period, fueled by rapid digital transformation and increasing adoption of cloud services in countries like China, India, and Japan.
The Database Design and Development Service market is segmented by service type into Consulting, System Integration, and Support and Maintenance. Consulting services play a pivotal role in the market as they help organizations understand their database needs and devise the most suitable strategies for database management. These services include assessing current database systems, recommending improvements, and designing new database architectures tailored to specific business requirements. The demand for consulting services is particularly high among small and medium enterprises (SMEs) that may lack in-house expertise in database management.
System Integration services are critical in enabling the seamless integration of new database solutions with existing IT infrastructure. These services ensure that the new databases function harmoniously with other systems within the organization, thereby minimizing disruptions and enhancing operational efficiency. As businesses continue to adopt new technologies and migrate to more advanced database solutions, the demand for system integration services is expected to grow substantially. This is especially true for large enterprises with complex IT environments that require sophisticated integration capabilities.
Support and Maintenance services are essential for ensuring the ongoing performance and reliability of database systems. These services include routine maintenance, troubleshooting, and performance optimization. As databases become more complex and integral to
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global full-text database market is projected to grow from XXX million in 2025 to XXX million by 2033, at a CAGR of XX% during the forecast period. The growth is attributed to increasing demand for information retrieval, advancements in technology, and rising need for efficient research and development. Key drivers of the market include growing adoption of digital libraries, rising demand for personalized content, and increasing focus on research and development. Key trends in the full-text database market include the emergence of artificial intelligence (AI) and machine learning (ML) technologies, the growth of open access publishing, and the increasing adoption of cloud-based solutions. The market is segmented by application (academic research, corporate research, legal research, and others) and by type (bibliographic, full-text, and abstract). Major players in the market include John Wiely & Sons, ICPSR, IEEE, EBSCO, UMI, Blackwell, Springer Link, Elsevier Science, Apache Solr, Elastic N.V., CNKI, China Science and Technology Journal Database, Wanfang Data Knowledge Service Platform, China Science Citation Database, and Chinese, Western, Japanese and Russian Journals Joint Directory Database. The market is expected to witness significant growth in emerging economies, such as China and India, due to rising literacy rates and increasing demand for information access.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2018 PREDICT Dataset (deprecated)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/jrc-predict-2018-core on 11 January 2022.
--- Dataset description provided by original source is as follows ---
NOTE: The 2018 PREDICT Dataset has been deprecated, and it is now superseded by its latest edition - 2019 PREDICT Dataset:
http://data.europa.eu/89h/6c6f7ce7-893b-48e9-b074-2baaa4b6c7d8
PREDICT includes statistics on ICT industries and their R&D in Europe since 2006. The project covers major world competitors including 40 advanced and emerging countries - the EU28 plus Norway, Russia and Switzerland in Europe, Canada, the United States and Brazil in the Americas, China, India, Japan, South Korea and Taiwan in Asia, and Australia -. The dataset provides indicators in a wide variety of topics, including value added, employment, labour productivity and business R&D expenditure (BERD), distinguishing fine grain economic activities in ICT industries (up to 22 individual activities, 14 of which at the class level, i.e. at 4 digits in the ISIC/NACE classification), media and content industries (15 activities, 11 of them at 4 digit level) and at a higher level of aggregation for all the other industries in the economy. It also produces data on Government financing of R&D in ICTs, and total R&D expenditure. Nowcasting of more relevant data in these domains is also performed until a year before the reference date, while time series go back to 1995.
ICTs determine competitive power in the knowledge economy. The ICT sector alone originates almost one fourth of total Business expenditure in R&D (BERD) for the aggregate of the 40 economies under scrutiny in the project. It also has a huge enabling role for innovation in other technological domains. This is reflected at the EU policy level, where the Digital Agenda for Europe in 2010 was identified as one of the seven pillars of the Europe 2020 Strategy for growth in the Union; and the achievement of a Digital Single Market (DSM) is one of the 10 political priorities set by the Commission since 2015.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in China expanded 5.20 percent in the second quarter of 2025 over the same quarter of the previous year. This dataset provides - China GDP Annual Growth Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.