47 datasets found
  1. World Cities

    • kaggle.com
    Updated May 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harry Wang (2022). World Cities [Dataset]. https://www.kaggle.com/datasets/harrywang/world-cities
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 8, 2022
    Dataset provided by
    Kaggle
    Authors
    Harry Wang
    Description

    Source

    The data file is from https://simplemaps.com/data/world-cities.

    fieldnamedescription
    cityThe name of the city/town as a Unicode string
    city_asciicity as an ASCII string (e.g. Goiania). Left blank if ASCII representation is not possible.
    latThe latitude of the city/town.
    lonThe longitude of the city/town.
    countryThe name of the city/town's country.
    iso2The alpha-2 iso code of the country.
    iso3The alpha-3 iso code of the country.
    admin_nameThe name of the highest level administration region of the city town (e.g. a US state or Canadian province). Possibly blank.
    capitalBlank string if not a capital, otherwise: primary - country's capital (e.g. Washington D.C.) admin - first-level admin capital (e.g. Little Rock, AR) minor - lower-level admin capital (e.g. Fayetteville, AR)
    populationAn estimate of the city's urban population. Only available for some (prominent) cities. If the urban population is not available, the municipal population is used.
    idA 10-digit unique id generated by SimpleMaps. We make every effort to keep it consistent across releases and databases (e.g. U.S Cities Database).
  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. T

    GROSS FIXED CAPITAL FORMATION by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 24, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2013). GROSS FIXED CAPITAL FORMATION by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gross-fixed-capital-formation
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jul 24, 2013
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GROSS FIXED CAPITAL FORMATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. Climate Change: Earth Surface Temperature Data

    • redivis.com
    • kaggle.com
    application/jsonl +7
    Updated Feb 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia Data Platform Demo (2021). Climate Change: Earth Surface Temperature Data [Dataset]. https://redivis.com/datasets/1e0a-f4931vvyg
    Explore at:
    avro, csv, sas, stata, parquet, spss, arrow, application/jsonlAvailable download formats
    Dataset updated
    Feb 17, 2021
    Dataset provided by
    Redivis Inc.
    Authors
    Columbia Data Platform Demo
    Time period covered
    Nov 1, 1743 - Dec 1, 2015
    Area covered
    Earth
    Description

    Abstract

    Compilation of Earth Surface temperatures historical. Source: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data

    Documentation

    Data compiled by the Berkeley Earth project, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures

    %3C!-- --%3E

    • LandAverageTemperature: global average land temperature in celsius

    %3C!-- --%3E

    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average

    %3C!-- --%3E

    • LandMaxTemperature: global average maximum land temperature in celsius

    %3C!-- --%3E

    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature

    %3C!-- --%3E

    • LandMinTemperature: global average minimum land temperature in celsius

    %3C!-- --%3E

    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature

    %3C!-- --%3E

    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius

    %3C!-- --%3E

    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    %3C!-- --%3E

    **Other files include: **

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)

    %3C!-- --%3E

    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)

    %3C!-- --%3E

    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)

    %3C!-- --%3E

    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    %3C!-- --%3E

    The raw data comes from the Berkeley Earth data page.

  5. f

    Major Cities

    • data.apps.fao.org
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Major Cities [Dataset]. https://data.apps.fao.org/map/catalog/srv/search?keyword=Capitals
    Explore at:
    Dataset updated
    Aug 9, 2024
    Description

    The "Major Cities" layer is derived from the "World Cities" dataset provided by ArcGIS Data and Maps group as part of the global data layers made available for public use. "Major cities" layer specifically contains National and Provincial capitals that have the highest population within their respective country. Cities were filtered based on the STATUS (“National capital”, “National and provincial capital”, “Provincial capital”, “National capital and provincial capital enclave”, and “Other”). Majority of these cities within larger countries have been filtered at the highest levels of POP_CLASS (“5,000,000 and greater” and “1,000,000 to 4,999,999”). However, China for example, was filtered with cities over 11 million people due to many highly populated cities. Population approximations are sourced from US Census and UN Data. Credits: ESRI, CIA World Factbook, GMI, NIMA, UN Data, UN Habitat, US Census Bureau Disclaimer: The designations employed and the presentation of material at this site do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

  6. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
  7. T

    CAPITAL FLOWS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 23, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2013). CAPITAL FLOWS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/capital-flows
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jul 23, 2013
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CAPITAL FLOWS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. World Cities

    • hub.arcgis.com
    • data.lojic.org
    • +4more
    Updated Jun 30, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). World Cities [Dataset]. https://hub.arcgis.com/datasets/esri::world-cities/explore
    Explore at:
    Dataset updated
    Jun 30, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.

  9. d

    Global Zip Code Dataset (9M+) | Address Data | Country, Regions, Lat/Long,...

    • datarade.ai
    .csv
    Updated Jun 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Zip Code Dataset (9M+) | Address Data | Country, Regions, Lat/Long, City | Weekly Updated [Dataset]. https://datarade.ai/data-products/geopostcodes-zip-code-data-global-coverage-8-6-m-zip-code-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jun 14, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    A global self-hosted location dataset containing all administrative divisions, cities, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.

    Use cases for the Global Zip Code Database (Geospatial data)

    • Address capture and validation

    • Map and visualization

    • Reporting and Business Intelligence (BI)

    • Master Data Mangement

    • Logistics and Supply Chain Management

    • Sales and Marketing

    Data export methodology

    Our location data packages are offered in variable formats, including .csv. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Fully and accurately geocoded

    • Administrative areas with a level range of 0-4

    • Multi-language support including address names in local and foreign languages

    • Comprehensive city definitions across countries

    For additional insights, you can combine the map data with:

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Times

    Why do companies choose our location databases

    • Enterprise-grade service

    • Reduce integration time and cost by 30%

    • Weekly updates for the highest quality

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  10. N

    Income Distribution by Quintile: Mean Household Income in Blue Earth City...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Blue Earth City Township, Minnesota // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/blue-earth-city-township-mn-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Blue Earth City Township, Minnesota
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Blue Earth City Township, Minnesota, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 23,569, while the mean income for the highest quintile (20% of households with the highest income) is 219,832. This indicates that the top earners earn 9 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 298,624, which is 135.84% higher compared to the highest quintile, and 1267.02% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Blue Earth City township median household income. You can refer the same here

  11. d

    Coresignal | Private Company Data | Company Data | AI-Enriched Datasets |...

    • datarade.ai
    .json, .csv
    Updated Aug 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coresignal (2023). Coresignal | Private Company Data | Company Data | AI-Enriched Datasets | Global / 35M+ Records / Updated Weekly [Dataset]. https://datarade.ai/data-products/coresignal-private-company-data-company-data-ai-enriche-coresignal
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Aug 13, 2023
    Dataset authored and provided by
    Coresignal
    Area covered
    Jamaica, Benin, Pitcairn, Argentina, Kyrgyzstan, Senegal, Grenada, Togo, Kiribati, Bhutan
    Description

    This Private Company Data dataset is a refined version of our company datasets, consisting of 35M+ data records.

    It’s an excellent data solution for companies with limited data engineering capabilities and those who want to reduce their time to value. You get filtered, cleaned, unified, and standardized B2B private company data. This data is also enriched by leveraging a carefully instructed large language model (LLM).

    AI-powered data enrichment offers more accurate information in key data fields, such as company descriptions. It also produces over 20 additional data points that are very valuable to B2B businesses. Enhancing and highlighting the most important information in web data contributes to quicker time to value, making data processing much faster and easier.

    For your convenience, you can choose from multiple data formats (Parquet, JSON, JSONL, or CSV) and select suitable delivery frequency (quarterly, monthly, or weekly).

    Coresignal is a leading private company data provider in the web data sphere with an extensive focus on firmographic data and public employee profiles. More than 3B data records in different categories enable companies to build data-driven products and generate actionable insights. Coresignal is exceptional in terms of data freshness, with 890M+ records updated monthly for unprecedented accuracy and relevance.

  12. aggregate-data-italian-cities-from-wikipedia

    • kaggle.com
    Updated May 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    alepuzio (2020). aggregate-data-italian-cities-from-wikipedia [Dataset]. https://www.kaggle.com/alepuzio/aggregatedataitaliancitiesfromwikipedia/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    alepuzio
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Context

    This dataset is the result of my study on web-scraping of English Wikipedia in R and my tests on regression and classification modelization in R.

    Content

    The content is create by reading the appropriate articles in English Wikipedia about Italian cities: I did'nt run NPL analisys but only the table with the data and I ranked every city from 0 to N in every aspect. About the values, 0 means "*the city is not ranked in this aspect*" and N means "*the city is at first place, in descending order of importance, in this aspect* ". If there's no ranking in a particular aspect (for example, the only existence of the airports/harbours with no additional data about the traffic or the size), then 0 means "*no existence*" and N means "*there are N airports/harbours*". The only not-numeric column is the column with the name of the cities in English form, except some exceptions (for example, "*Bra (CN)* " because of simplicity.

    Acknowledgements

    I acknowledge the Wikimedia Foundation for his work, his mission and to make available the cover image of this dataset, (please read the article "The Ideal city (painting)") . I acknowledge too StackOverflow and Cross-Validated to be the most important focus of technical knowledge in the world, all the people in Kaggle for the suggestions.

    Inspiration

    As a beginner in data analisys and modelization (Ok, I passed the exam of statistics in Politecnico di Milano (Italy), but there are more than 10 years that I don't work in this topic and my memory is getting old ^_^) I worked more on data clean, dataset building and building the simplest modelization.

    You can use this datase to realize which city is good to live or to expand this to add some other data from Wikipedia (not only reading the tables but too to read the text adn extrapolate the data from the meaningless text.)

  13. Covid-19 Highest City Population Density

    • kaggle.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    Kaggle
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  14. k

    The Human Capital Report

    • datasource.kapsarc.org
    Updated Dec 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). The Human Capital Report [Dataset]. https://datasource.kapsarc.org/explore/dataset/the-human-capital-report-2016/
    Explore at:
    Dataset updated
    Dec 17, 2024
    Description

    Explore The Human Capital Report dataset for insights into Human Capital Index, Development, and World Rankings. Find data on Probability of Survival to Age 5, Expected Years of School, Harmonized Test Scores, and more.

    Low income, Upper middle income, Lower middle income, High income, Human Capital Index (Lower Bound), Human Capital Index, Human Capital Index (Upper Bound), Probability of Survival to Age 5, Expected Years of School, Harmonized Test Scores, Learning-Adjusted Years of School, Fraction of Children Under 5 Not Stunted, Adult Survival Rate, Development, Human Capital, World Rankings

    Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Benin, Bhutan, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cyprus, Denmark, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Latvia, Lebanon, Lesotho, Liberia, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovenia, Solomon Islands, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Tuvalu, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Vietnam, Yemen, Zambia, Zimbabwe, WORLD

    Follow data.kapsarc.org for timely data to advance energy economics research.

    Last year edition of the World Economic Forum Human Capital Report explored the factors contributing to the development of an educated, productive and healthy workforce. This year edition deepens the analysis by focusing on a number of key issues that can support better design of education policy and future workforce planning.

  15. d

    Coresignal | Employee Data | From the Largest Professional Network | Global...

    • datarade.ai
    .json, .csv
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coresignal, Coresignal | Employee Data | From the Largest Professional Network | Global / 712M+ Records / 5 Years of Historical Data / Updated Daily [Dataset]. https://datarade.ai/data-products/public-resume-data-coresignal
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    Coresignal
    Area covered
    Christmas Island, Palestine, Latvia, Eritrea, Bosnia and Herzegovina, Brunei Darussalam, Macao, Réunion, Russian Federation, French Guiana
    Description

    ➡️ You can choose from multiple data formats, delivery frequency options, and delivery methods;

    ➡️ You can select raw or clean and AI-enriched datasets;

    ➡️ Multiple APIs designed for effortless search and enrichment (accessible using a user-friendly self-service tool);

    ➡️ Fresh data: daily updates, easy change tracking with dedicated data fields, and a constant flow of new data;

    ➡️ You get all necessary resources for evaluating our data: a free consultation, a data sample, or free credits for testing our APIs.

    Coresignal's employee data enables you to create and improve innovative data-driven solutions and extract actionable business insights. These datasets are popular among companies from different industries, including HR and sales technology and investment.

    Employee Data use cases:

    ✅ Source best-fit talent for your recruitment needs

    Coresignal's Employee Data can help source the best-fit talent for your recruitment needs by providing the most up-to-date information on qualified candidates globally.

    ✅ Fuel your lead generation pipeline

    Enhance lead generation with 712M+ up-to-date employee records from the largest professional network. Our Employee Data can help you develop a qualified list of potential clients and enrich your own database.

    ✅ Analyze talent for investment opportunities

    Employee Data can help you generate actionable signals and identify new investment opportunities earlier than competitors or perform deeper analysis of companies you're interested in.

    ➡️ Why 400+ data-powered businesses choose Coresignal:

    1. Experienced data provider (in the market since 2016);
    2. Exceptional client service;
    3. Responsible and secure data collection.
  16. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  17. N

    Blue Earth City Township, Minnesota Age Group Population Dataset: A Complete...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Blue Earth City Township, Minnesota Age Group Population Dataset: A Complete Breakdown of Blue Earth City township Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/blue-earth-city-township-mn-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Blue Earth City Township, Minnesota
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Blue Earth City township population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Blue Earth City township. The dataset can be utilized to understand the population distribution of Blue Earth City township by age. For example, using this dataset, we can identify the largest age group in Blue Earth City township.

    Key observations

    The largest age group in Blue Earth City Township, Minnesota was for the group of age 65 to 69 years years with a population of 56 (10.69%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Blue Earth City Township, Minnesota was the 50 to 54 years years with a population of 4 (0.76%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Blue Earth City township is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Blue Earth City township total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Blue Earth City township Population by Age. You can refer the same here

  18. f

    ORBIT: A real-world few-shot dataset for teachable object recognition...

    • city.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann (2023). ORBIT: A real-world few-shot dataset for teachable object recognition collected from people who are blind or low vision [Dataset]. http://doi.org/10.25383/city.14294597.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    City, University of London
    Authors
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.

  19. World Bank: International Debt Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: International Debt Data [Dataset]. https://www.kaggle.com/datasets/theworldbank/world-bank-intl-debt
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset contains both national and regional debt statistics captured by over 200 economic indicators. Time series data is available for those indicators from 1970 to 2015 for reporting countries.

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_intl_debt

    https://cloud.google.com/bigquery/public-data/world-bank-international-debt

    Citation: The World Bank: International Debt Statistics

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What countries have the largest outstanding debt?

    https://cloud.google.com/bigquery/images/outstanding-debt.png" alt="enter image description here"> https://cloud.google.com/bigquery/images/outstanding-debt.png

  20. a

    RAI - Human Capital Indicators (LGA) 2011 - Dataset - AURIN

    • data.aurin.org.au
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). RAI - Human Capital Indicators (LGA) 2011 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/rai-rai-human-capital-indicator-lga-2011-lga2011
    Explore at:
    Dataset updated
    Mar 6, 2025
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    This data has been created by the Regional Australia Institute for the [In]Sight competitive index released in 2012. Modelled on the World Economic Forums Global Competitiveness Report [In]Sight was developed in collaboration with Deloitte Access Economics and combines data from sources including the Australian Bureau of Statistics and the Social Health Atlas of Australia. Human capital is a measure of the capabilities and skills of the workforce in a particular region. Both health and education are major contributors to a region's level of human capital as both of these factors are understood to increase labour efficiency and competitiveness. Regions of non-metropolitan Australia which have high levels of human capital that is a well educated workforce and a propensity towards lifelong learning are expected to experience higher levels of economic growth are more adaptive and innovative and are more resilient to negative outside influences.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Harry Wang (2022). World Cities [Dataset]. https://www.kaggle.com/datasets/harrywang/world-cities
Organization logo

World Cities

Information about ~ 41,000 places around the world

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 8, 2022
Dataset provided by
Kaggle
Authors
Harry Wang
Description

Source

The data file is from https://simplemaps.com/data/world-cities.

fieldnamedescription
cityThe name of the city/town as a Unicode string
city_asciicity as an ASCII string (e.g. Goiania). Left blank if ASCII representation is not possible.
latThe latitude of the city/town.
lonThe longitude of the city/town.
countryThe name of the city/town's country.
iso2The alpha-2 iso code of the country.
iso3The alpha-3 iso code of the country.
admin_nameThe name of the highest level administration region of the city town (e.g. a US state or Canadian province). Possibly blank.
capitalBlank string if not a capital, otherwise: primary - country's capital (e.g. Washington D.C.) admin - first-level admin capital (e.g. Little Rock, AR) minor - lower-level admin capital (e.g. Fayetteville, AR)
populationAn estimate of the city's urban population. Only available for some (prominent) cities. If the urban population is not available, the municipal population is used.
idA 10-digit unique id generated by SimpleMaps. We make every effort to keep it consistent across releases and databases (e.g. U.S Cities Database).
Search
Clear search
Close search
Google apps
Main menu