The data file is from https://simplemaps.com/data/world-cities.
fieldname | description |
---|---|
city | The name of the city/town as a Unicode string |
city_ascii | city as an ASCII string (e.g. Goiania). Left blank if ASCII representation is not possible. |
lat | The latitude of the city/town. |
lon | The longitude of the city/town. |
country | The name of the city/town's country. |
iso2 | The alpha-2 iso code of the country. |
iso3 | The alpha-3 iso code of the country. |
admin_name | The name of the highest level administration region of the city town (e.g. a US state or Canadian province). Possibly blank. |
capital | Blank string if not a capital, otherwise: primary - country's capital (e.g. Washington D.C.) admin - first-level admin capital (e.g. Little Rock, AR) minor - lower-level admin capital (e.g. Fayetteville, AR) |
population | An estimate of the city's urban population. Only available for some (prominent) cities. If the urban population is not available, the municipal population is used. |
id | A 10-digit unique id generated by SimpleMaps. We make every effort to keep it consistent across releases and databases (e.g. U.S Cities Database). |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GROSS FIXED CAPITAL FORMATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Compilation of Earth Surface temperatures historical. Source: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
Data compiled by the Berkeley Earth project, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
**Other files include: **
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
The raw data comes from the Berkeley Earth data page.
The "Major Cities" layer is derived from the "World Cities" dataset provided by ArcGIS Data and Maps group as part of the global data layers made available for public use. "Major cities" layer specifically contains National and Provincial capitals that have the highest population within their respective country. Cities were filtered based on the STATUS (“National capital”, “National and provincial capital”, “Provincial capital”, “National capital and provincial capital enclave”, and “Other”). Majority of these cities within larger countries have been filtered at the highest levels of POP_CLASS (“5,000,000 and greater” and “1,000,000 to 4,999,999”). However, China for example, was filtered with cities over 11 million people due to many highly populated cities. Population approximations are sourced from US Census and UN Data. Credits: ESRI, CIA World Factbook, GMI, NIMA, UN Data, UN Habitat, US Census Bureau Disclaimer: The designations employed and the presentation of material at this site do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CAPITAL FLOWS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.
A global self-hosted location dataset containing all administrative divisions, cities, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.
Use cases for the Global Zip Code Database (Geospatial data)
Address capture and validation
Map and visualization
Reporting and Business Intelligence (BI)
Master Data Mangement
Logistics and Supply Chain Management
Sales and Marketing
Data export methodology
Our location data packages are offered in variable formats, including .csv. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Fully and accurately geocoded
Administrative areas with a level range of 0-4
Multi-language support including address names in local and foreign languages
Comprehensive city definitions across countries
For additional insights, you can combine the map data with:
UNLOCODE and IATA codes
Time zones and Daylight Saving Times
Why do companies choose our location databases
Enterprise-grade service
Reduce integration time and cost by 30%
Weekly updates for the highest quality
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Blue Earth City Township, Minnesota, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth City township median household income. You can refer the same here
This Private Company Data dataset is a refined version of our company datasets, consisting of 35M+ data records.
It’s an excellent data solution for companies with limited data engineering capabilities and those who want to reduce their time to value. You get filtered, cleaned, unified, and standardized B2B private company data. This data is also enriched by leveraging a carefully instructed large language model (LLM).
AI-powered data enrichment offers more accurate information in key data fields, such as company descriptions. It also produces over 20 additional data points that are very valuable to B2B businesses. Enhancing and highlighting the most important information in web data contributes to quicker time to value, making data processing much faster and easier.
For your convenience, you can choose from multiple data formats (Parquet, JSON, JSONL, or CSV) and select suitable delivery frequency (quarterly, monthly, or weekly).
Coresignal is a leading private company data provider in the web data sphere with an extensive focus on firmographic data and public employee profiles. More than 3B data records in different categories enable companies to build data-driven products and generate actionable insights. Coresignal is exceptional in terms of data freshness, with 890M+ records updated monthly for unprecedented accuracy and relevance.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset is the result of my study on web-scraping of English Wikipedia in R and my tests on regression and classification modelization in R.
The content is create by reading the appropriate articles in English Wikipedia about Italian cities: I did'nt run NPL analisys but only the table with the data and I ranked every city from 0 to N in every aspect. About the values, 0 means "*the city is not ranked in this aspect*" and N means "*the city is at first place, in descending order of importance, in this aspect* ". If there's no ranking in a particular aspect (for example, the only existence of the airports/harbours with no additional data about the traffic or the size), then 0 means "*no existence*" and N means "*there are N airports/harbours*". The only not-numeric column is the column with the name of the cities in English form, except some exceptions (for example, "*Bra (CN)* " because of simplicity.
I acknowledge the Wikimedia Foundation for his work, his mission and to make available the cover image of this dataset, (please read the article "The Ideal city (painting)") . I acknowledge too StackOverflow and Cross-Validated to be the most important focus of technical knowledge in the world, all the people in Kaggle for the suggestions.
As a beginner in data analisys and modelization (Ok, I passed the exam of statistics in Politecnico di Milano (Italy), but there are more than 10 years that I don't work in this topic and my memory is getting old ^_^) I worked more on data clean, dataset building and building the simplest modelization.
You can use this datase to realize which city is good to live or to expand this to add some other data from Wikipedia (not only reading the tables but too to read the text adn extrapolate the data from the meaningless text.)
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Explore The Human Capital Report dataset for insights into Human Capital Index, Development, and World Rankings. Find data on Probability of Survival to Age 5, Expected Years of School, Harmonized Test Scores, and more.
Low income, Upper middle income, Lower middle income, High income, Human Capital Index (Lower Bound), Human Capital Index, Human Capital Index (Upper Bound), Probability of Survival to Age 5, Expected Years of School, Harmonized Test Scores, Learning-Adjusted Years of School, Fraction of Children Under 5 Not Stunted, Adult Survival Rate, Development, Human Capital, World Rankings
Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Benin, Bhutan, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cyprus, Denmark, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Latvia, Lebanon, Lesotho, Liberia, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovenia, Solomon Islands, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Tuvalu, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Vietnam, Yemen, Zambia, Zimbabwe, WORLD
Follow data.kapsarc.org for timely data to advance energy economics research.
Last year edition of the World Economic Forum Human Capital Report explored the factors contributing to the development of an educated, productive and healthy workforce. This year edition deepens the analysis by focusing on a number of key issues that can support better design of education policy and future workforce planning.
➡️ You can choose from multiple data formats, delivery frequency options, and delivery methods;
➡️ You can select raw or clean and AI-enriched datasets;
➡️ Multiple APIs designed for effortless search and enrichment (accessible using a user-friendly self-service tool);
➡️ Fresh data: daily updates, easy change tracking with dedicated data fields, and a constant flow of new data;
➡️ You get all necessary resources for evaluating our data: a free consultation, a data sample, or free credits for testing our APIs.
Coresignal's employee data enables you to create and improve innovative data-driven solutions and extract actionable business insights. These datasets are popular among companies from different industries, including HR and sales technology and investment.
Employee Data use cases:
✅ Source best-fit talent for your recruitment needs
Coresignal's Employee Data can help source the best-fit talent for your recruitment needs by providing the most up-to-date information on qualified candidates globally.
✅ Fuel your lead generation pipeline
Enhance lead generation with 712M+ up-to-date employee records from the largest professional network. Our Employee Data can help you develop a qualified list of potential clients and enrich your own database.
✅ Analyze talent for investment opportunities
Employee Data can help you generate actionable signals and identify new investment opportunities earlier than competitors or perform deeper analysis of companies you're interested in.
➡️ Why 400+ data-powered businesses choose Coresignal:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5
If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD
The following text is a summary of the information in the above Data Descriptor.
The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.
The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.
These maps represent a unique global representation of physical access to essential services offered by cities and ports.
The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).
travel_time_to_ports_x (x ranges from 1 to 5)
The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.
Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes
Data type Byte (16 bit Unsigned Integer)
No data value 65535
Flags None
Spatial resolution 30 arc seconds
Spatial extent
Upper left -180, 85
Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)
Temporal resolution 2015
Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.
Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.
The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.
Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points
The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).
Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.
Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.
This process and results are included in the validation zip file.
Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.
The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.
The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.
The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Blue Earth City township population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Blue Earth City township. The dataset can be utilized to understand the population distribution of Blue Earth City township by age. For example, using this dataset, we can identify the largest age group in Blue Earth City township.
Key observations
The largest age group in Blue Earth City Township, Minnesota was for the group of age 65 to 69 years years with a population of 56 (10.69%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Blue Earth City Township, Minnesota was the 50 to 54 years years with a population of 4 (0.76%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth City township Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset contains both national and regional debt statistics captured by over 200 economic indicators. Time series data is available for those indicators from 1970 to 2015 for reporting countries.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_intl_debt
https://cloud.google.com/bigquery/public-data/world-bank-international-debt
Citation: The World Bank: International Debt Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
What countries have the largest outstanding debt?
https://cloud.google.com/bigquery/images/outstanding-debt.png" alt="enter image description here">
https://cloud.google.com/bigquery/images/outstanding-debt.png
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
This data has been created by the Regional Australia Institute for the [In]Sight competitive index released in 2012. Modelled on the World Economic Forums Global Competitiveness Report [In]Sight was developed in collaboration with Deloitte Access Economics and combines data from sources including the Australian Bureau of Statistics and the Social Health Atlas of Australia. Human capital is a measure of the capabilities and skills of the workforce in a particular region. Both health and education are major contributors to a region's level of human capital as both of these factors are understood to increase labour efficiency and competitiveness. Regions of non-metropolitan Australia which have high levels of human capital that is a well educated workforce and a propensity towards lifelong learning are expected to experience higher levels of economic growth are more adaptive and innovative and are more resilient to negative outside influences.
The data file is from https://simplemaps.com/data/world-cities.
fieldname | description |
---|---|
city | The name of the city/town as a Unicode string |
city_ascii | city as an ASCII string (e.g. Goiania). Left blank if ASCII representation is not possible. |
lat | The latitude of the city/town. |
lon | The longitude of the city/town. |
country | The name of the city/town's country. |
iso2 | The alpha-2 iso code of the country. |
iso3 | The alpha-3 iso code of the country. |
admin_name | The name of the highest level administration region of the city town (e.g. a US state or Canadian province). Possibly blank. |
capital | Blank string if not a capital, otherwise: primary - country's capital (e.g. Washington D.C.) admin - first-level admin capital (e.g. Little Rock, AR) minor - lower-level admin capital (e.g. Fayetteville, AR) |
population | An estimate of the city's urban population. Only available for some (prominent) cities. If the urban population is not available, the municipal population is used. |
id | A 10-digit unique id generated by SimpleMaps. We make every effort to keep it consistent across releases and databases (e.g. U.S Cities Database). |