https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom's main stock market index, the GB100, fell to 8941 points on July 11, 2025, losing 0.38% from the previous session. Over the past month, the index has climbed 0.63% and is up 8.34% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, fell to 39432 points on July 14, 2025, losing 0.35% from the previous session. Over the past month, the index has climbed 2.93%, though it remains 4.47% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada's main stock market index, the TSX, fell to 27023 points on July 11, 2025, losing 0.22% from the previous session. Over the past month, the index has climbed 1.53% and is up 19.18% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Canada. Canada Stock Market Index (TSX) - values, historical data, forecasts and news - updated on July of 2025.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Predicting the stock market is one of the most commonly performed projects when someone is learning about ML and Data Science. After all, who wouldn't want to delegate the task of picking stocks to a model and reap the rewards for themselves? However, one of the most difficult and tedious steps to predict what stocks to invest in is actually gathering the data to use. There are so many options and it is important to get sufficient information for each. But, what if you can skip this step and just download a dataset that has all that information easily available for you? Look no further as this is the answer to this problem.
This dataset contains information of 4447 stocks traded under Nasdaq across various exchanges. There is a file that contains information for all 4447 stocks but also has several null fields, which is why I labeled it as full_financial_stocks_raw.csv --it has minimal modifications to the values inside the rows. The second file, dividend_stocks_only.csv, is still a raw-ish style dataset but it only contains stocks that pay out dividends to its shareholders. Interestingly, it seems dividend-paying stocks have more information about them, which explains why this file has significantly fewer rows with null values.
Update: In the next 24 hours, I will be uploading an optimized, feature-engineered dataset that has fewer columns overall and fewer rows with null values. This dataset is intended to be a fully cleaned option to directly feed into ML/DL models.
I would like to thank the sources where I obtained my data, which are the FTP Nasdaq Trader website and the Yahoo Finance API.
Analyzing the stock market is one of the most intriguing endeavors I could think of as the ways it can be influenced are so broad and distinct from one another. A news article can influence how investors view a particular company, social media can directly fluctuate a company's share price, and there are numerous calculations and formulas that can show what stocks are worth investing in.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains the historical stock prices and related financial information for five major technology companies: Apple (AAPL), Microsoft (MSFT), Amazon (AMZN), Google (GOOGL), and Tesla (TSLA). The dataset spans a five-year period from January 1, 2019, to January 1, 2024. It includes key stock metrics such as Open, High, Low, Close, Adjusted Close, and Volume for each trading day.
The data was sourced using the yfinance library in Python, which provides convenient access to historical market data from Yahoo Finance.
The dataset contains the following columns:
Date: The trading date. Open: The opening price of the stock on that date. High: The highest price of the stock on that date. Low: The lowest price of the stock on that date. Close: The closing price of the stock on that date. Adj Close: The adjusted closing price, accounting for dividends and splits. Volume: The number of shares traded on that date. Ticker: The stock ticker symbol representing each company.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 25 series, with data for years 1956 - present (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Toronto Stock Exchange Statistics (25 items: Standard and Poor's/Toronto Stock Exchange Composite Index; high; Standard and Poor's/Toronto Stock Exchange Composite Index; close; Toronto Stock Exchange; oil and gas; closing quotations; Standard and Poor's/Toronto Stock Exchange Composite Index; low ...).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides detailed historical data on the US stock market, covering the period from 21st November 2023 to 2nd February 2024. It includes daily performance metrics for major stocks and indices, enabling investors, analysts, and researchers to study short-term market trends, fluctuations, and patterns.
The dataset contains the following key attributes for each trading day:
Date: The trading date.
Ticker: Stock ticker symbol (e.g., AAPL for Apple, MSFT for Microsoft).
Open Price: The price at which the stock opened for trading.
Close Price: The price at which the stock closed for trading . High Price: The highest price reached during the trading session.
Low Price: The lowest price reached during the trading session.
Adjusted Close Price: The closing price adjusted for splits and dividend payouts.
Trading Volume: The total number of shares traded on that day.
Time Period: Covers daily data for over two months of trading activity.
Market Scope: Includes data from a diverse set of stocks, industries, and sectors, reflecting the broader US market trends.
Indices and Major Stocks: Tracks key indices (e.g., S&P 500, NASDAQ) and major stocks across various sectors .
Analyzing short-term market performance trends. Developing trading strategies or backtesting investment models. Exploring the impact of macroeconomic events on stock performance. Studying sector-wise performance in the US stock market.
The data has been sourced from publicly available market records, ensuring reliability and accuracy. Each data point represents an official trading record from the respective exchange.
The dataset is intended for educational, analytical, and research purposes only. Users should be mindful of potential market anomalies or external factors influencing data during this time frame.
Special thanks to the organizations and platforms that make financial market data accessible for analysis and research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Egypt EG: Stocks Traded: Total Value data was reported at 14.429 USD bn in 2017. This records an increase from the previous number of 10.080 USD bn for 2016. Egypt EG: Stocks Traded: Total Value data is updated yearly, averaging 21.767 USD bn from Dec 2006 (Median) to 2017, with 12 observations. The data reached an all-time high of 95.827 USD bn in 2008 and a record low of 10.080 USD bn in 2016. Egypt EG: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Egypt – Table EG.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Stocks Traded: Total Value data was reported at 2.206 USD bn in 2017. This records an increase from the previous number of 1.510 USD bn for 2016. Nigeria NG: Stocks Traded: Total Value data is updated yearly, averaging 2.080 USD bn from Dec 1993 (Median) to 2017, with 22 observations. The data reached an all-time high of 17.360 USD bn in 2007 and a record low of 30.200 USD mn in 1993. Nigeria NG: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong's main stock market index, the HK50, rose to 24219 points on July 14, 2025, gaining 0.33% from the previous session. Over the past month, the index has climbed 0.66% and is up 34.43% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains information on the balance sheet of the general government sector. The information is limited to financial assets and liabilities. For each reporting period the opening and closing stocks, financial transactions and other changes are shown. Transactions are economic flows that are the result of agreements between units. Other changes are changes in the value of assets or liabilities that do not result from transactions such as revaluations or reclassifications. The figures are consolidated which means that flows between units that belong to the same sector are eliminated. As a result, assets and liabilities of subsectors do not add up to total assets or liabilities of general government. For example, loans of the State provided to social security funds are part of loans of the State. However, these are not included in the consolidated assets of general government, because it is an asset of a government unit with a government unit as debtor. Financial assets and liabilities in this table are presented at market value. The terms and definitions used are in accordance with the framework of the Dutch national accounts. National accounts are based on the international definitions of the European System of Accounts (ESA 2010). Small temporary differences with publications of the National Accounts may occur due to the fact that the government finance statistics are sometimes more up to date.
Data available from: Yearly figures from 1995, quarterly figures from 1999.
Status of the figures: The figures for the period 1995-2023 are final. The figures for 2024 and 2025 are provisional.
Changes as of 24 June 2025: The figures for the first quarter of 2025 are available. Figures for 2023 and 2024 have been adjusted due to updated information. The figures for 2023 are final. In the context of the revision policy of National accounts, the dividend tax has been adjusted as of the fourth quarter of 2006. The revised registration aligns more closely with the accrual principle of ESA 2010.
Changes as of 10 April 2025: Due to an error made while processing the data, the initial preliminary figures for the government financial balance sheet in 2024 were calculated incorrectly. This causes a downward revision in other accounts payable.
When will new figures be published? Provisional quarterly figures are published three months after the end of the quarter. In September the figures on the first quarter may be revised, in December the figures on the second quarter may be revised and in March the first three quarters may be revised. Yearly figures are published for the first time three months after the end of the year concerned. Yearly figures are revised two times: 6 and 18 months after the end of the year. Please note that there is a possibility that adjustments might take place at the end of March or September, in order to provide the European Commission with the most actual figures. Revised yearly figures are published in June each year. Quarterly figures are aligned to the three revised years at the end of June. More information on the revision policy of Dutch national accounts and government finance statistics can be found under 'relevant articles' under paragraph 3.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘📊 Financial market screener’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/pierrelouisdanieau/financial-market-screener on 28 January 2022.
--- Dataset description provided by original source is as follows ---
In this dataset you will find several characteristics on global companies listed on the stock exchange. These characteristics are analyzed by millions of investors before they invest their money.
Analyze the stock market performance of thousands of companies ! This is the objective of this dataset !
Among thse charateristics you will find :
All this data is public data, obtained from the annual financial reports of these companies. They have been retrieved from the Yahoo Finance API and have been checked beforehand.
This dataset has been designed so that it is possible to build a recommendation engine. For example, from an existing position in a portfolio, recommend an alternative with similar characteristics (sector, market capitalization, current ratio,...) but more in line with an investor's expectations (may be with less risk or with more dividends etc...)
If you have question about this dataset you can contact me
--- Original source retains full ownership of the source dataset ---
Get Nasdaq real-time and historical data with support for fast market replay at over 19 million book updates per second. Test our data for free with only 4 lines of code.
Nasdaq TotalView-ITCH is a proprietary data feed that disseminates full order book depth and last sale data from the Nasdaq stock market (XNAS). It delivers every quote and order at each price level, along with any event that updates the order book after an order is placed, such as trade executions, modifications, or cancellations. Nasdaq is the most active US equity exchange by volume and represented 13.03% of the average daily volume (ADV) as of January 2025.
With its L3 granularity, Nasdaq TotalView-ITCH captures information beyond the L1, top-of-book data available through SIP feeds and enables more accurate modeling of book imbalances, trade directionality, quote lifetimes, and more. This includes explicit trade aggressor side, odd lots, auction imbalance data, and the Net Order Imbalance Indicator (NOII) for the Nasdaq Opening and Closing Crosses and Nasdaq IPO/Halt Cross—the best predictor of Nasdaq opening and closing prices available. Other key advantages of Nasdaq TotalView-ITCH over SIP data include faster real-time dissemination and precise exchange-side timestamping directly from Nasdaq.
Real-time Nasdaq TotalView-ITCH data is included with a Plus or Unlimited subscription through our Databento US Equities service. Historical data is available for usage-based rates or with any subscription. Visit our pricing page for more details or to upgrade your plan.
Breadth of coverage: 20,329 products
Asset class(es): Equities
Origin: Directly captured at Equinix NY4 (Secaucus, NJ) with an FPGA-based network card and hardware timestamping. Synchronized to UTC with PTP.
Supported data encodings: DBN, CSV, JSON Learn more
Supported market data schemas: MBO, MBP-1, MBP-10, BBO-1s, BBO-1m, TBBO, Trades, OHLCV-1s, OHLCV-1m, OHLCV-1h, OHLCV-1d, Definition, Statistics, Status, Imbalance Learn more
Resolution: Immediate publication, nanosecond-resolution timestamps
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘NIFTY-50 Stocks Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/iamsouravbanerjee/nifty50-stocks-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
The NIFTY 50 is a benchmark Indian stock market index that represents the weighted average of 50 of the largest Indian companies listed on the National Stock Exchange. It is one of the two main stock indices used in India, the other being the BSE SENSEX.
Nifty 50 is owned and managed by NSE Indices (previously known as India Index Services & Products Limited), which is a wholly-owned subsidiary of the NSE Strategic Investment Corporation Limited. NSE Indices had a marketing and licensing agreement with Standard & Poor's for co-branding equity indices until 2013. The Nifty 50 index was launched on 22 April 1996, and is one of the many stock indices of Nifty.
The NIFTY 50 index has shaped up to be the largest single financial product in India, with an ecosystem consisting of exchange-traded funds (onshore and offshore), exchange-traded options at NSE, and futures and options abroad at the SGX. NIFTY 50 is the world's most actively traded contract. WFE, IOM, and FIA surveys endorse NSE's leadership position.
The NIFTY 50 index covers 13 sectors (as of 30 April 2021) of the Indian economy and offers investment managers exposure to the Indian market in one portfolio. Between 2008 & 2012, the NIFTY 50 index's share of NSE's market capitalization fell from 65% to 29% due to the rise of sectoral indices like NIFTY Bank, NIFTY IT, NIFTY Pharma, NIFTY SERV SECTOR, NIFTY Next 50, etc. The NIFTY 50 Index gives a weightage of 39.47% to financial services, 15.31% to Energy, 13.01% to IT, 12.38% to consumer goods, 6.11% to Automobiles a and 0% to the agricultural sector.
The NIFTY 50 index is a free-float market capitalization weighted index. The index was initially calculated on a full market capitalization methodology. On 26 June 2009, the computation was changed to a free-float methodology. The base period for the NIFTY 50 index is 3 November 1995, which marked the completion of one year of operations of the National Stock Exchange Equity Market Segment. The base value of the index has been set at 1000 and a base capital of ₹ 2.06 trillion.
In this Dataset, we have records of all the NIFTY-50 stocks along with various parameters.
For more, you can visit the website of the National Stock Exchange of India Limited (NSE): https://www1.nseindia.com/
--- Original source retains full ownership of the source dataset ---
http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html
The National Stock Exchange of India Ltd. (NSE) is an Indian stock exchange located at Mumbai, Maharashtra, India. National Stock Exchange (NSE) was established in 1992 as a demutualized electronic exchange. It was promoted by leading financial institutions on request of the Government of India. It is India’s largest exchange by turnover. In 1994, it launched electronic screen-based trading. Thereafter, it went on to launch index futures and internet trading in 2000, which were the first of its kind in the country.
With the help of NSE, you can trade in the following segments:
Equities
Indices
Mutual Funds
Exchange Traded Funds
Initial Public Offerings
Security Lending and Borrowing Scheme
https://cdn6.newsnation.in/images/2019/06/24/Sharemarket-164616041_6.jpg" alt="Stock image">
Companies on successful IPOs gets their Stocks traded over different Stock Exchnage platforms. NSE is one important platofrm in India. There are thousands of companies trading their stocks in NSE. But, I have chosen two popular and high rated IT service companies of India; TCS and INFOSYS. and the third one is the benchmark for Indian IT companies , i.e. NIFTY_IT_INDEX .
The dataset contains three csv files. Each resembling to INFOSYS, NIFTY_IT_INDEX, and TCS, respectively. One can easily identify that by the name of CSV files.
Timeline of Data recording : 1-1-2015 to 31-12-2015.
Source of Data : Official NSE website.
Method : We have used the NSEpy api to fetch the data from NSE site. I have also mentioned my approach in this Kernel - "**WebScraper to download data for NSE**". Please go though that to better understand the nature of this dataset.
INFOSYS - 248 x 15 || NIFTY_IT_INDEX - 248 x 7 || **TCS - 248 x 15
Colum Descriptors:
Date
: date on which data is recorded
Symbol
: NSE symbol of the stock
Series
: Series of that stock | EQ - Equity
OTHER SERIES' ARE:
EQ: It stands for Equity. In this series intraday trading is possible in addition to delivery.
BE: It stands for Book Entry. Shares falling in the Trade-to-Trade or T-segment are traded in this series and no intraday is allowed. This means trades can only be settled by accepting or giving the delivery of shares.
BL: This series is for facilitating block deals. Block deal is a trade, with a minimum quantity of 5 lakh shares or minimum value of Rs. 5 crore, executed through a single transaction, on the special “Block Deal window”. The window is opened for only 35 minutes in the morning from 9:15 to 9:50AM.
BT: This series provides an exit route to small investors having shares in the physical form with a cap of maximum 500 shares.
GC: This series allows Government Securities and Treasury Bills to be traded under this category.
IL: This series allows only FIIs to trade among themselves. Permissible only in those securities where maximum permissible limit for FIIs is not breached.
Prev Close
: Last day close point
Open
: current day open point
High
: current day highest point
Low
: current day lowest point
Last
: the final quoted trading price for a particular stock, or stock-market index, during the most recent day of trading.
Close
: Closing point for the current day
VWAP
: volume-weighted average price is the ratio of the value traded to total volume traded over a particular time horizon
Volume
: the amount of a security that was traded during a given period of time. For every buyer, there is a seller, and each
transaction contributes to the count of total volume.
Turnover
: Total Turnover of the stock till that day
Trades
: Number of buy or Sell of the stock.
Deliverable
: Volumethe quantity of shares which actually move from one set of people (who had those shares in their demat account before today and are selling today) to another set of people (who have purchased those shares and will get those shares by T+2 days in their demat account).
%Deliverble
: percentage deliverables of that stock
I woul dlike to acknowledge all my sincere thanks to the brains behind NSEpy api, and in particular SWAPNIL JARIWALA , who is also maintaining an amazing open source github repo for this api.
I have also built a starter kernel for this dataset. You can find that right here .
I am so excited to see your magical approaches for the same dataset.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.