82 datasets found
  1. U

    United States US: Land Area Where Elevation is Below 5 Meters: % of Total...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-land-area-where-elevation-is-below-5-meters--of-total-land-area
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 1.168 % in 2010. This stayed constant from the previous number of 1.168 % for 2000. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 1.168 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 1.168 % in 2010 and a record low of 1.168 % in 2010. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Land area below 5m is the percentage of total land where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  2. United States COVID-19 County Level of Community Transmission as Originally...

    • odgavaprod.ogopendata.com
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). United States COVID-19 County Level of Community Transmission as Originally Posted - ARCHIVED [Dataset]. https://odgavaprod.ogopendata.com/dataset/united-states-covid-19-county-level-of-community-transmission-as-originally-posted-archived
    Explore at:
    rdf, csv, xsl, jsonAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived community transmission and related data elements by county as originally displayed on the COVID Data Tracker. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly community transmission data by county as originally posted can also be found here: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).

    Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this dataset with the daily values as originally posted on the COVID Data Tracker, and an historical dataset with daily data as well as the updates and corrections from state and local health departments. Similar to this dataset, the original historical dataset is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing historical community transmission data by county is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).

    This public use dataset has 7 data elements reflecting community transmission levels for all available counties and jurisdictions. It contains reported daily transmission levels at the county level with the same values used to display transmission maps on the COVID Data Tracker. Each day, the dataset is appended to contain the most recent day's data. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.

    Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.

    CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2

    Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).

    Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).

    If

  3. a

    USA 2020 Census Population Characteristics - Place Geographies

    • city-of-vancouver-wa-geo-hub-cityofvancouver.hub.arcgis.com
    • city-of-vancouver-strategic-plan-dashboard-cityofvancouver.hub.arcgis.com
    • +1more
    Updated May 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vancouver Online Maps (2023). USA 2020 Census Population Characteristics - Place Geographies [Dataset]. https://city-of-vancouver-wa-geo-hub-cityofvancouver.hub.arcgis.com/datasets/8fe7368fd2024ed183572566a8fe96c3
    Explore at:
    Dataset updated
    May 25, 2023
    Dataset authored and provided by
    Vancouver Online Maps
    Area covered
    Description

    This CSV file shows total population counts by sex, age, and race groupsdata from the2020 CensusDemographic andHousing Characteristics. Thisisshown by Nation, Consolidated City, Census Designated Place, Incorporated Placeboundaries. Eachgeographylayercontainsa common set of Census countsbased on available attributes from the U.S. Census Bureau. There are alsoadditionalcalculated attributes related to this topic, which can be mapped or used within analysis.  Vintageof boundaries and attributes:2020Demographic andHousing CharacteristicsTable(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this file.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDatethe Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layerThe United States Census BureauDemographic andHousing Characteristics:2020 Census Results2020 Census Data QualityGeography &2020 CensusTechnical DocumentationData Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & UpdatesData Processing Notes:These 2020 Census boundaries come from the US Census TIGER geodatabases.These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. ForCensustractsand block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square metersor larger (mid tolarge sizedwater bodies) are erased from the tractand block groupboundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased tomore accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layercontainsall US states, Washington D.C., and Puerto Rico.Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can beidentifiedby the "_calc_" stub in the field name).Field alias names were created based on the Table Shells file available from the Data Table Guide for theDemographic Profile and Demographic andHousing Characteristics.Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected usingdifferential privacy techniquesby the U.S. Census Bureau.

  4. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  5. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    • +1more
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  6. n

    Jurisdictional Unit (Public) - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Jurisdictional Unit (Public) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/jurisdictional-unit-public
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The

  7. United States COVID-19 County Level of Community Transmission Historical...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Oct 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2022). United States COVID-19 County Level of Community Transmission Historical Changes - ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-County-Level-of-Community-T/nra9-vzzn
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 21, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived historical community transmission and related data elements by county. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly historical community transmission data by county can also be found here: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).

    Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this historical dataset with the daily county-level transmission data from January 22, 2020, and a dataset with the daily values as originally posted on the COVID Data Tracker. Similar to this dataset, the original dataset with daily data as posted is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing community transmission data by county as originally posted is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).

    This public use dataset has 7 data elements reflecting historical data for community transmission levels for all available counties and jurisdictions. It contains historical data for the county level of community transmission and includes updated data submitted by states and jurisdictions. Each day, the dataset was updated to include the most recent days’ data and incorporate any historical changes made by jurisdictions. This dataset includes data since January 22, 2020. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.

    Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.

    CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2

    Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).

    Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).

    If the two metrics suggest different transmission levels, the higher level is selected. If one metric is missing, the other metric is used for the indicator.

    The reported transmission categories include:

    Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%;

    Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%;

    Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%;

    High Transmission Threshold: Counties with 100 or more total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 10.0% or greater.

    Blank: total new cases in the past 7 days are not reported (county data known to be unavailable) and the percentage of positive NAATs tests during the past 7 days (blank) are not reported.

    Data Suppression To prevent the release of data that could be used to identify people, data cells are suppressed for low frequency. When the case counts used to calculate the total new case rate metric ("cases_per_100K_7_day_count_change") is greater than zero and less than 10, this metric is set to "suppressed" to protect individual privacy. If the case count is 0, the total new case rate metric is still displayed.

    The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. This datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.

    Duplicate Records Issue A bug was found on 12/28/2021 that caused many records in the dataset to be duplicated. This issue was resolved on 01/06/2022.

  8. USA 2020 Census Population Characteristics - Place Geographies

    • scwp-lacounty.hub.arcgis.com
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). USA 2020 Census Population Characteristics - Place Geographies [Dataset]. https://scwp-lacounty.hub.arcgis.com/datasets/esri::usa-2020-census-population-characteristics-place-geographies
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.   To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  9. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Aug 31, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States increased to 4.30 percent in August from 4.20 percent in July of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  10. 2010 Coastal Georgia Elevation Project Lidar Data

    • datasets.ai
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +2more
    0, 21, 33
    Updated Mar 15, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2010). 2010 Coastal Georgia Elevation Project Lidar Data [Dataset]. https://datasets.ai/datasets/2010-coastal-georgia-elevation-project-lidar-data
    Explore at:
    33, 0, 21Available download formats
    Dataset updated
    Mar 15, 2010
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    National Oceanic and Atmospheric Administration, Department of Commerce
    Area covered
    Georgia
    Description

    Between January and March 2010, lidar data was collected in southeast/coastal Georgia under a multi-agency partnership between the Coastal Georgia Regional Development Center, USGS, FEMA, NOAA and local county governments. Data acquisition is for the full extent of coastal Georgia, approximately 50 miles inland, excluding counties with existing high-resolution lidar derived elevation data. The data capture area consists of an area of approximately 5703 square miles. This project is within the Atlantic Coastal Priority Area as defined by the National Geospatial Program (NGP) and supports homeland security requirements of the National Geospatial-Intelligence Agency (NGA). This project also supports the National Spatial Data Infrastructure (NSDI) and will advance USGS efforts related to The National Map and the National Elevation Dataset.

    The data were delivered in LAS format version 1.2 in 5000 x 5000 foot tiles. The data are classified according to ASPRS LAS 1.2 classification scheme:

    Class 1 - Unclassified Class 2 - Bare Earth Class 7 - Low Point (Noise) Class 9 - Water Class 10 - Land below sea level Class 12 - Overlap

  11. Updated U.S. Low-Temperature Heating and Cooling Demand by County and Sector...

    • data.openei.org
    • gdr.openei.org
    • +2more
    data, image_document
    Updated Dec 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hyunjun Oh; Koenraad Beckers; Hyunjun Oh; Koenraad Beckers (2022). Updated U.S. Low-Temperature Heating and Cooling Demand by County and Sector [Dataset]. http://doi.org/10.15121/1987526
    Explore at:
    image_document, dataAvailable download formats
    Dataset updated
    Dec 31, 2022
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory
    Authors
    Hyunjun Oh; Koenraad Beckers; Hyunjun Oh; Koenraad Beckers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset includes U.S. low-temperature heating and cooling demand at the county level in major end-use sectors: residential, commercial, manufacturing, agricultural, and data centers. Census division-level end-use energy consumption, expenditure, and commissioned power database were dis-aggregated to the county level. The county-level database was incorporated with climate zone, numbers of housing units and farms, farm size, and coefficient of performance (COP) for heating and cooling demand analysis. This dataset also includes a paper containing a full explanation of the methodologies used and maps. Residential data were updated from the latest Residential Energy Consumption Survey (RECS) dataset (2015) using 2020 census data. Commercial data were baselined off the latest Commercial Building Energy Consumption Survey (CBECS) dataset (2012). Manufacturing data were baselined off the latest Manufacturing Energy Consumption Survey (MECS) dataset (2021).

  12. US Highschool students dataset

    • kaggle.com
    zip
    Updated Apr 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    peter mushemi (2024). US Highschool students dataset [Dataset]. https://www.kaggle.com/datasets/petermushemi/us-highschool-students-dataset
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 14, 2024
    Authors
    peter mushemi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:

    Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.

    This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.

  13. U.S. Sea Level Rise Projections - Grid

    • oceans-esrioceans.hub.arcgis.com
    • hub.arcgis.com
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). U.S. Sea Level Rise Projections - Grid [Dataset]. https://oceans-esrioceans.hub.arcgis.com/datasets/esri::u-s-sea-level-rise-projections-grid
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The points in this layer represent the 1-degree gridded mean sea level rise projections in centimeters (cm) for years 2020 to 2150. Each location includes five different Global Mean Sea Level (GMSL) scenarios and three different uncertainty confidence limits (percentiles). The difference in GMSL uses the year 2000 as a "baseline" (0.0m).

    Global Mean Sea Level in year 2100

    Scenario Name

    0.3 m

    Low

    0.5 m

    Intermediate-Low

    1.0 m

    Intermediate

    1.5 m

    Intermediate-High

    2.0 m

    High

    The Global Mean Sea Level impacts regions differently due to issues such as vertical land movement/subsidence, regional ocean dynamics, glacier and ice sheet melt, etc.

    Percentile

    Name

    17th

    Low

    50th

    Medium

    83rd

    High

    These percentiles are intended to capture uncertainty associated with extrapolating the rate of sea level rise acceleration based on historical observations for each location. There are 5 different scenarios and 3 different percentiles that provide a total of 15 different possibilities for interpreting sea level rise for a given location. You can “Filter” the data to select the most appropriate for your work. Here is how you do that:These data were obtained from the Sea Level Rise Technical Report “Data and Tools” section. The Sea Level Rise Technical Report Application Guide provides a wealth of documentation for interpreting and using the various data products from the Sea Level Rise Technical Report. This gridded layer has a companion layer of the U.S. Sea Level Rise Projections - Water Level Station. Source: Mean Sea Level Dataset for "Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines" Citation: Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nos-techrpt01-global-regional-SLR-scenarios-US.pdf Scenario: For each of the 5 GMSL scenarios (identified by the rise amounts in meters by 2100 - 0.3 m , 0.5 m. 1.0 m, 1.5 m and 2.0 m), there is a low, medium (med) and high value, corresponding to the 17th, 50th, and 83rd percentiles. Scenarios (15 total): 0.3 - MED, 0.3 - LOW, 0.3 - HIGH, 0.5 - MED, 0.5 - LOW, 0.5 - HIGH, 1.0 - MED, 1.0 - LOW, 1.0 - HIGH, 1.5 - MED, 1.5 - LOW, 1.5 - HIGH, 2.0 - MED, 2.0 - LOW, and 2.0 - HIGH Years (15 total): 2005, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120, 2130, 2140, and 2150 More Info: https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.html

  14. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  15. A

    NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence

    • data.amerigeoss.org
    • datasets.ai
    • +3more
    html
    Updated Aug 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence [Dataset]. https://data.amerigeoss.org/ar/dataset/noaa-office-for-coastal-management-sea-level-rise-data-mapping-confidence-ad230
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 27, 2022
    Dataset provided by
    United States
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: http://www.coast.noaa.gov/slr These data depict the mapping confidence of the associated Sea Level Rise inundation data, for the sea level rise amount specified. Areas that have a low degree of confidence, or high uncertainty, represent locations that may be mapped correctly (either as inundated or dry) less than 8 out of 10 times. Areas that have a high degree of confidence, or low uncertainty, represent locations that will be correctly mapped (either as inundated or dry) more than 8 out of 10 times or that there is an 80 percent degree of confidence that these areas are correctly mapped. Areas mapped as dry (no inundation) with a high confidence or low uncertainty are coded as 0. Areas mapped as dry or wet with a low confidence or high uncertainty are coded as 1. Areas mapped as wet (inundation) with a high confidence or low uncertainty are coded as 2. The NOAA Office for Coastal Management has tentatively adopted an 80 percent rank (as either inundated or not inundated) as the zone of relative confidence. The use of 80 percent has no special significance but is a commonly used rule of thumb measure to describe economic systems (Epstein and Axtell, 1996). In short, the method includes the uncertainty in the lidar derived elevation data (root mean square error, or RMSE) and the uncertainty in the modeled tidal surface from the NOAA VDATUM model (RMSE). This uncertainty is combined and mapped to show that the inundation depicted in this data is not really a hard line, but rather a zone with greater and lesser chances of getting wet. For a detailed description of the confidence level and its computation, please see the Mapping Inundation Uncertainty document available at: http://www.coast.noaa.gov/slr/viewer/assets/pdfs/Elevation_Mapping_Confidence_Methods.pdf

  16. d

    Vehicle Miles Traveled

    • data.world
    csv, zip
    Updated Aug 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). Vehicle Miles Traveled [Dataset]. https://data.world/associatedpress/vehicle-miles-traveled
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Aug 30, 2023
    Authors
    The Associated Press
    Time period covered
    Mar 1, 2020 - Dec 31, 2020
    Description

    **This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **

    Overview

    Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.

    This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.

    Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.

    This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.

    Findings

    • Nationally, data shows that vehicle travel in the US has doubled compared to the seven-day period ending April 13, which was the lowest VMT since the COVID-19 crisis began. In early December, travel reached a low not seen since May, with a small rise leading up to the Christmas holiday.
    • Average vehicle miles traveled continues to be below what would be expected without a pandemic - down 38% compared to January 2020. September 4 reported the largest single day estimate of vehicle miles traveled since March 14.
    • New Jersey, Michigan and New York are among the states with the largest relative uptick in travel at this point of the pandemic - they report almost two times the miles traveled compared to their lowest seven-day period. However, travel in New Jersey and New York is still much lower than expected without a pandemic. Other states such as New Mexico, Vermont and West Virginia have rebounded the least. ## About This Data The county level data is provided by StreetLight Data, Inc, a transportation analysis firm that measures travel patterns across the U.S.. The data is from their Vehicle Miles Traveled (VMT) Monitor which uses anonymized and aggregated data from smartphones and other GPS-enabled devices to provide county-by-county VMT metrics for more than 3,100 counties. The VMT Monitor provides an estimate of total vehicle miles travelled by residents of each county, each day since the COVID-19 crisis began (March 1, 2020), as well as a change from the baseline average daily VMT calculated for January 2020. Additional columns are calculations by AP.

    Included Data

    01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    Additional Data Queries

    * Filter for specific state - filters 02_vmt_state.csv daily data for specific state.

    * Filter counties by state - filters 03_vmt_county.csv daily data for counties in specific state.

    * Filter for specific county - filters 03_vmt_county.csv daily data for specific county.

    Interactive

    The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:

    @(https://interactives.ap.org/vmt-map/)

    Interactive Embed Code

    Using the Data

    This data can help put your county's mobility in context with your state and over time. The data set contains different measures of change - daily comparisons and seven day rolling averages. The rolling average allows for a smoother trend line for comparison across counties and states. To get the full picture, there are also two available baselines - vehicle miles traveled in January 2020 (pre-pandemic) and vehicle miles traveled at each geography's low point during the pandemic.

    Caveats

    • The data from StreetLight Data, Inc does not include data for some low-population counties with low VMT (<5,000 miles/day in their baseline month of January 2020). In our analyses, we only include the 2,779 counties that have daily data for the entire period (March 1, 2020 to current).
    • In some cases, a lack of decline in mobility from March to April can indicate that movement in the county is essential to keeping the larger economy going or that residents need to drive further to reach essentials businesses like grocery stores compared to other counties.
    • The VMT includes both passenger and commercial miles, so truck traffic is included. However, the proxy is based on the "total number of trip starts and ends for all devices whose most frequent location is in this county". It does not count the VMT of trucks cutting through a county.
    • For those instances where travel begins in one county and ends in another, the county where the miles are recorded is always the vehicle’s home county. ###### Contact reporter Angeliki Kastanis at akastanis@ap.org.
  17. Data from: Rooftop Energy Potential of Low Income Communities in America...

    • data.openei.org
    • osti.gov
    • +3more
    archive, data +2
    Updated Apr 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mooney; Sigrin; Mooney; Sigrin (2018). Rooftop Energy Potential of Low Income Communities in America REPLICA [Dataset]. https://data.openei.org/submissions/8174
    Explore at:
    website, archive, presentation, dataAvailable download formats
    Dataset updated
    Apr 3, 2018
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Office of Energy Efficiency and Renewable Energyhttp://energy.gov/eere
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory
    Authors
    Mooney; Sigrin; Mooney; Sigrin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Rooftop Energy Potential of Low Income Communities in America REPLICA data set provides estimates of residential rooftop solar technical potential at the tract-level with emphasis on estimates for Low and Moderate Income LMI populations. In addition to technical potential REPLICA is comprised of 10 additional datasets at the tract-level to provide socio-demographic and market context. The model year vintage of REPLICA is 2015. The LMI solar potential estimates are made at the tract level grouped by Area Median Income AMI income tenure and building type. These estimates are based off of LiDAR data of 128 metropolitan areas statistical modeling and ACS 2011-2015 demographic data. The remaining datasets are supplemental datasets that can be used in conjunction with the technical potential data for general LMI solar analysis planning and policy making. The core dataset is a wide-format CSV file seeds_ii_replica.csv that can be tagged to a tract geometry using the GEOID or GISJOIN fields. In addition users can download geographic shapefiles for the main or supplemental datasets. This dataset was generated as part of the larger NREL-led SEEDSII Solar Energy Evolution and Diffusion Studies project and specifically for the NREL technical report titled Rooftop Solar Technical Potential for Low-to-Moderate Income Households in the United States by Sigrin and Mooney 2018. This dataset is intended to give researchers planners advocates and policy-makers access to credible data to analyze low-income solar issues and potentially perform cost-benefit analysis for program design. To explore the data in an interactive web mapping environment use the NREL SolarForAll app.

  18. T

    United States Inflation Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Inflation Rate [Dataset]. https://tradingeconomics.com/united-states/inflation-cpi
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Sep 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1914 - Aug 31, 2025
    Area covered
    United States
    Description

    Inflation Rate in the United States increased to 2.90 percent in August from 2.70 percent in July of 2025. This dataset provides - United States Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  19. First Street Foundation Property Level Flood Risk Statistics V2.0

    • zenodo.org
    Updated Jun 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    First Street Foundation; First Street Foundation (2024). First Street Foundation Property Level Flood Risk Statistics V2.0 [Dataset]. http://doi.org/10.5281/zenodo.6459076
    Explore at:
    Dataset updated
    Jun 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    First Street Foundation; First Street Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The property level flood risk statistics generated by the First Street Foundation Flood Model Version 2.0 come in CSV format.

    The data that is included in the CSV includes:

    • An FSID; a First Street ID (FSID) is a unique identifier assigned to each location.

    • The latitude and longitude of a parcel as well as the zip code, census block group, census tract, county, congressional district, and state of a given parcel.

    • The property’s Flood Factor as well as data on economic loss.

    • The flood depth in centimeters at the low, medium, and high CMIP 4.5 climate scenarios for the 2, 5, 20, 100, and 500 year storms this year and in 30 years.

    • Data on the cumulative probability of a flood event exceeding the 0cm, 15cm, and 30cm threshold depth is provided at the low, medium, and high climate scenarios for this year and in 30 years.

    • Information on historical events and flood adaptation, such as ID and name.

    This dataset includes First Street's aggregated flood risk summary statistics. The data is available in CSV format and is aggregated at the congressional district, county, and zip code level. The data allows you to compare FSF data with FEMA data. You can also view aggregated flood risk statistics for various modeled return periods (5-, 100-, and 500-year) and see how risk changes due to climate change (compare FSF 2020 and 2050 data). There are various Flood Factor risk score aggregations available including the average risk score for all properties (flood factor risk scores 1-10) and the average risk score for properties with risk (i.e. flood factor risk scores of 2 or greater). This is version 2.0 of the data and it covers the 50 United States and Puerto Rico. There will be updated versions to follow.

    If you are interested in acquiring First Street flood data, you can request to access the data here. More information on First Street's flood risk statistics can be found here and information on First Street's hazards can be found here.

    The data dictionary for the parcel-level data is below.

    Field Name

    Type

    Description

    fsid

    int

    First Street ID (FSID) is a unique identifier assigned to each location

    long

    float

    Longitude

    lat

    float

    Latitude

    zcta

    int

    ZIP code tabulation area as provided by the US Census Bureau

    blkgrp_fips

    int

    US Census Block Group FIPS Code

    tract_fips

    int

    US Census Tract FIPS Code

    county_fips

    int

    County FIPS Code

    cd_fips

    int

    Congressional District FIPS Code for the 116th Congress

    state_fips

    int

    State FIPS Code

    floodfactor

    int

    The property's Flood Factor, a numeric integer from 1-10 (where 1 = minimal and 10 = extreme) based on flooding risk to the building footprint. Flood risk is defined as a combination of cumulative risk over 30 years and flood depth. Flood depth is calculated at the lowest elevation of the building footprint (largest if more than 1 exists, or property centroid where footprint does not exist)

    CS_depth_RP_YY

    int

    Climate Scenario (low, medium or high) by Flood depth (in cm) for the Return Period (2, 5, 20, 100 or 500) and Year (today or 30 years in the future). Today as year00 and 30 years as year30. ex: low_depth_002_year00

    CS_chance_flood_YY

    float

    Climate Scenario (low, medium or high) by Cumulative probability (percent) of at least one flooding event that exceeds the threshold at a threshold flooding depth in cm (0, 15, 30) for the year (today or 30 years in the future). Today as year00 and 30 years as year30. ex: low_chance_00_year00

    aal_YY_CS

    int

    The annualized economic damage estimate to the building structure from flooding by Year (today or 30 years in the future) by Climate Scenario (low, medium, high). Today as year00 and 30 years as year30. ex: aal_year00_low

    hist1_id

    int

    A unique First Street identifier assigned to a historic storm event modeled by First Street

    hist1_event

    string

    Short name of the modeled historic event

    hist1_year

    int

    Year the modeled historic event occurred

    hist1_depth

    int

    Depth (in cm) of flooding to the building from this historic event

    hist2_id

    int

    A unique First Street identifier assigned to a historic storm event modeled by First Street

    hist2_event

    string

    Short name of the modeled historic event

    hist2_year

    int

    Year the modeled historic event occurred

    hist2_depth

    int

    Depth (in cm) of flooding to the building from this historic event

    adapt_id

    int

    A unique First Street identifier assigned to each adaptation project

    adapt_name

    string

    Name of adaptation project

    adapt_rp

    int

    Return period of flood event structure provides protection for when applicable

    adapt_type

    string

    Specific flood adaptation structure type (can be one of many structures associated with a project)

    fema_zone

    string

    Specific FEMA zone categorization of the property ex: A, AE, V. Zones beginning with "A" or "V" are inside the Special Flood Hazard Area which indicates high risk and flood insurance is required for structures with mortgages from federally regulated or insured lenders

    footprint_flag

    int

    Statistics for the property are calculated at the centroid of the building footprint (1) or at the centroid of the parcel (0)

  20. Elevations Contours and Depression

    • geodata.dep.state.fl.us
    • hhcusf-usfaist.opendata.arcgis.com
    • +3more
    Updated Jan 1, 1950
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (1950). Elevations Contours and Depression [Dataset]. https://geodata.dep.state.fl.us/datasets/elevations-contours-and-depression/api
    Explore at:
    Dataset updated
    Jan 1, 1950
    Dataset authored and provided by
    Florida Department of Environmental Protectionhttp://www.floridadep.gov/
    Area covered
    Description

    This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com, United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-land-area-where-elevation-is-below-5-meters--of-total-land-area

United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area

Explore at:
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 1990 - Dec 1, 2010
Area covered
United States
Description

United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 1.168 % in 2010. This stayed constant from the previous number of 1.168 % for 2000. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 1.168 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 1.168 % in 2010 and a record low of 1.168 % in 2010. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Land area below 5m is the percentage of total land where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

Search
Clear search
Close search
Google apps
Main menu