Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Middle township. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middle township median household income by race. You can refer the same here
Dataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.
The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.
Aggregate data [agg]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Middle Point, OH, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/middle-point-oh-median-household-income-by-household-size.jpeg" alt="Middle Point, OH median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middle Point median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Middle Point: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middle Point median household income by age. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10. For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developing data-driven solutions that address real-world problems requires understanding of these problems’ causes and how their interaction affects the outcome–often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing the causal relationships from observational data as a Directed Acyclic Graph (DAG). BNs could be especially useful for research in global health in Lower and Middle Income Countries, where there is an increasing abundance of observational data that could be harnessed for policy making, program evaluation, and intervention design. However, BNs have not been widely adopted by global health professionals, and in real-world applications, confidence in the results of BNs generally remains inadequate. This is partially due to the inability to validate against some ground truth, as the true DAG is not available. This is especially problematic if a learned DAG conflicts with pre-existing domain doctrine. Here we conceptualize and demonstrate an idea of a “Causal Datasheet” that could approximate and document BN performance expectations for a given dataset, aiming to provide confidence and sample size requirements to practitioners. To generate results for such a Causal Datasheet, a tool was developed which can generate synthetic Bayesian networks and their associated synthetic datasets to mimic real-world datasets. The results given by well-known structure learning algorithms and a novel implementation of the OrderMCMC method using the Quotient Normalized Maximum Likelihood score were recorded. These results were used to populate the Causal Datasheet, and recommendations could be made dependent on whether expected performance met user-defined thresholds. We present our experience in the creation of Causal Datasheets to aid analysis decisions at different stages of the research process. First, one was deployed to help determine the appropriate sample size of a planned study of sexual and reproductive health in Madhya Pradesh, India. Second, a datasheet was created to estimate the performance of an existing maternal health survey we conducted in Uttar Pradesh, India. Third, we validated generated performance estimates and investigated current limitations on the well-known ALARM dataset. Our experience demonstrates the utility of the Causal Datasheet, which can help global health practitioners gain more confidence when applying BNs.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Middle Eastern Human Facial Images Dataset, meticulously curated to enhance face recognition models and support the development of advanced biometric identification systems, KYC models, and other facial recognition technologies.
This dataset comprises over 1500 Middle Eastern individual facial image sets, with each set including:
The dataset includes contributions from a diverse network of individuals across Middle Eastern countries.
To ensure high utility and robustness, all images are captured under varying conditions:
Each facial image set is accompanied by detailed metadata for each participant, including:
This metadata is essential for training models that can accurately recognize and identify faces across different demographics and conditions.
This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:
We understand the evolving nature of AI and machine learning requirements. Therefore, we continuously add more assets with diverse conditions to this off-the-shelf facial image dataset.
DMPED is using economic data to drive positive change and build good government for District of Columbia residents. They are focusing on collecting and compiling information about the city, in particular on D.C.’s economic development priorities that create more pathways to the middle class: jobs, quality affordable housing, and community-focused development.This site is an online version of the Deputy Mayor for Planning and Economic Development’s weekly dashboard. This dashboard is also transmitted to the City Administrator, the Mayor, and other senior staff, so they can be aware of economic trends and context. It includes only data that is public, so certain indicators that DMPED uses are not included.
The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
By the middle of the 1990s, Indonesia had enjoyed over three decades of remarkable social, economic, and demographic change and was on the cusp of joining the middle-income countries. Per capita income had risen more than fifteenfold since the early 1960s, from around US$50 to more than US$800. Increases in educational attainment and decreases in fertility and infant mortality over the same period reflected impressive investments in infrastructure. In the late 1990s the economic outlook began to change as Indonesia was gripped by the economic crisis that affected much of Asia. In 1998 the rupiah collapsed, the economy went into a tailspin, and gross domestic product contracted by an estimated 12-15%-a decline rivaling the magnitude of the Great Depression. The general trend of several decades of economic progress followed by a few years of economic downturn masks considerable variation across the archipelago in the degree both of economic development and of economic setbacks related to the crisis. In part this heterogeneity reflects the great cultural and ethnic diversity of Indonesia, which in turn makes it a rich laboratory for research on a number of individual- and household-level behaviors and outcomes that interest social scientists. The Indonesia Family Life Survey is designed to provide data for studying behaviors and outcomes. The survey contains a wealth of information collected at the individual and household levels, including multiple indicators of economic and non-economic well-being: consumption, income, assets, education, migration, labor market outcomes, marriage, fertility, contraceptive use, health status, use of health care and health insurance, relationships among co-resident and non- resident family members, processes underlying household decision-making, transfers among family members and participation in community activities. In addition to individual- and household-level information, the IFLS provides detailed information from the communities in which IFLS households are located and from the facilities that serve residents of those communities. These data cover aspects of the physical and social environment, infrastructure, employment opportunities, food prices, access to health and educational facilities, and the quality and prices of services available at those facilities. By linking data from IFLS households to data from their communities, users can address many important questions regarding the impact of policies on the lives of the respondents, as well as document the effects of social, economic, and environmental change on the population. The Indonesia Family Life Survey complements and extends the existing survey data available for Indonesia, and for developing countries in general, in a number of ways. First, relatively few large-scale longitudinal surveys are available for developing countries. IFLS is the only large-scale longitudinal survey available for Indonesia. Because data are available for the same individuals from multiple points in time, IFLS affords an opportunity to understand the dynamics of behavior, at the individual, household and family and community levels. In IFLS1 7,224 households were interviewed, and detailed individual-level data were collected from over 22,000 individuals. In IFLS2, 94.4% of IFLS1 households were re-contacted (interviewed or died). In IFLS3 the re-contact rate was 95.3% of IFLS1 households. Indeed nearly 91% of IFLS1 households are complete panel households in that they were interviewed in all three waves, IFLS1, 2 and 3. These re-contact rates are as high as or higher than most longitudinal surveys in the United States and Europe. High re-interview rates were obtained in part because we were committed to tracking and interviewing individuals who had moved or split off from the origin IFLS1 households. High re-interview rates contribute significantly to data quality in a longitudinal survey because they lessen the risk of bias due to nonrandom attrition in studies using the data. Second, the multipurpose nature of IFLS instruments means that the data support analyses of interrelated issues not possible with single-purpose surveys. For example, the availability of data on household consumption together with detailed individual data on labor market outcomes, health outcomes and on health program availability and quality at the community level means that one can examine the impact of income on health outcomes, but also whether health in turn affects incomes. Third, IFLS collected both current and retrospective information on most topics. With data from multiple points of time on current status and an extensive array of retrospective information about the lives of respondents, analysts can relate dynamics to events that occurred in the past. For example, changes in labor outcomes in recent years can be explored as a function of earlier decisions about schooling and work. Fourth, IFLS collected extensive measures of health status, including self-reported measures of general health status, morbidity experience, and physical assessments conducted by a nurse (height, weight, head circumference, blood pressure, pulse, waist and hip circumference, hemoglobin level, lung capacity, and time required to repeatedly rise from a sitting position). These data provide a much richer picture of health status than is typically available in household surveys. For example, the data can be used to explore relationships between socioeconomic status and an array of health outcomes. Fifth, in all waves of the survey, detailed data were collected about respondents¹ communities and public and private facilities available for their health care and schooling. The facility data can be combined with household and individual data to examine the relationship between, for example, access to health services (or changes in access) and various aspects of health care use and health status. Sixth, because the waves of IFLS span the period from several years before the economic crisis hit Indonesia, to just prior to it hitting, to one year and then three years after, extensive research can be carried out regarding the living conditions of Indonesian households during this very tumultuous period. In sum, the breadth and depth of the longitudinal information on individuals, households, communities, and facilities make IFLS data a unique resource for scholars and policymakers interested in the processes of economic development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Middle Taylor township. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middle Taylor township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of footprint pattern classes and the 2011 census rural-urban classification for output areas in England and Wales.
Families of tax filers; Single-earner and dual-earner census families by number of children (final T1 Family File; T1FF).
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289
Abstract (en): The Research on Early Life and Aging Trends and Effects (RELATE) study compiles cross-national data that contain information that can be used to examine the effects of early life conditions on older adult health conditions, including heart disease, diabetes, obesity, functionality, mortality, and self-reported health. The complete cross sectional/longitudinal dataset (n=147,278) was compiled from major studies of older adults or households across the world that in most instances are representative of the older adult population either nationally, in major urban centers, or in provinces. It includes over 180 variables with information on demographic and geographic variables along with information about early life conditions and life course events for older adults in low, middle and high income countries. Selected variables were harmonized to facilitate cross national comparisons. In this first public release of the RELATE data, a subset of the data (n=88,273) is being released. The subset includes harmonized data of older adults from the following regions of the world: Africa (Ghana and South Africa), Asia (China, India), Latin America (Costa Rica, major cities in Latin America), and the United States (Puerto Rico, Wisconsin). This first release of the data collection is composed of 19 downloadable parts: Part 1 includes the harmonized cross-national RELATE dataset, which harmonizes data from parts 2 through 19. Specifically, parts 2 through 19 include data from Costa Rica (Part 2), Puerto Rico (Part 3), the United States (Wisconsin) (Part 4), Argentina (Part 5), Barbados (Part 6), Brazil (Part 7), Chile (Part 8), Cuba (Part 9), Mexico (Parts 10 and 15), Uruguay (Part 11), China (Parts 12, 18, and 19), Ghana (Part 13), India (Part 14), Russia (Part 16), and South Africa (Part 17). The Health and Retirement Study (HRS) was also used in the compilation of the larger RELATE data set (HRS) (N=12,527), and these data are now available for public release on the HRS data products page. To access the HRS data that are part of the RELATE data set, please see the collection notes below. The purpose of this study was to compile and harmonize cross-national data from both the developing and developed world to allow for the examination of how early life conditions are related to older adult health and well being. The selection of countries for this study was based on their diversity but also on the availability of comprehensive cross sectional/panel survey data for older adults born in the early to mid 20th century in low, middle and high income countries. These data were then utilized to create the harmonized cross-national RELATE data (Part 1). Specifically, data that are being released in this version of the RELATE study come from the following studies: CHNS (China Health and Nutrition Study) CLHLS (Chinese Longitudinal Healthy Longevity Survey) CRELES (Costa Rican Study of Longevity and Healthy Aging) PREHCO (Puerto Rican Elderly: Health Conditions) SABE (Study of Aging Survey on Health and Well Being of Elders) SAGE (WHO Study on Global Ageing and Adult Health) WLS (Wisconsin Longitudinal Study) Note that the countries selected represent a diverse range in national income levels: Barbados and the United States (including Puerto Rico) represent high income countries; Argentina, Cuba, Uruguay, Chile, Costa Rica, Brazil, Mexico, and Russia represent upper middle income countries; China and India represent lower middle income countries; and Ghana represents a low income country. Users should refer to the technical report that accompanies the RELATE data for more detailed information regarding the study design of the surveys used in the construction of the cross-national data. The Research on Early Life and Aging Trends and Effects (RELATE) data includes an array of variables, including basic demographic variables (age, gender, education), variables relating to early life conditions (height, knee height, rural/urban birthplace, childhood health, childhood socioeconomic status), adult socioeconomic status (income, wealth), adult lifestyle (smoking, drinking, exercising, diet), and health outcomes (self-reported health, chronic conditions, difficulty with functionality, obesity, mortality). Not all countries have the same variables. Please refer to the technical report that is part of the documentation for more detail regarding the variables available across countries. Sample weights are applicable to all countries exc...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The KU-BdSL refers to a Bengali sign language dataset, which includes three variants of the data. The variants are - (i) Uni-scale Sign Language Dataset (USLD), (ii) Multi-scale Sign Language Dataset (MSLD), and (iii) Annotated Multi-scale Sign Language Dataset (AMSLD). The dataset consists of images representing single-hand gestures for BdSL alphabets. Several smartphones are taken into account to capture images from 34 participants (26 males and 8 females). These 34 volunteers associated with the dataset creation have not offered any financial benefit. Each version includes 30 classes that resemble the 38 consonants ('shoroborno') of Bengali alphabets. There is a total of 1,500 images in jpg format in each variant. The images are captured on flat surfaces at different times of the day to vary the brightness and contrast. Class names are Unicode values corresponding to the Bengali alphabets for USLD and MSLD.
Folder Names: 2433 -> ‘Chandra Bindu’ 2434 -> ‘Anusshar’ 2435 -> ‘Bisharga’ 2453 -> ‘Ka’ 2454 -> ‘Kha’ 2455 -> ‘Ga’ 2456 -> ‘Gha’ 2457 -> ‘Uo’ 2458 -> ‘Ca’ 2459 -> ‘Cha’ 2460-2479 -> ‘Borgio Ja/Anta Ja’ 2461 -> ‘Jha’ 2462 -> ‘Yo’ 2463 -> ‘Ta’ 2464 -> ‘Tha’ 2465 -> ‘Da’ 2466 -> ‘Dha’ 2467-2472 -> ‘Murdha Na/Donto Na’ 2468-2510 -> ‘ta/Khanda ta’ 2469 -> ‘tha’ 2470 -> ‘da’ 2471 -> ‘dha’ 2474 -> ‘pa’ 2475 -> ‘fa’ 2476-2477 -> ‘Ba/Bha’ 2478 -> ‘Ma’ 2480-2524-2525 -> ‘Ba-y Ra/Da-y Ra/Dha-y Ra’ 2482 -> ‘La’ 2486-2488-2487 -> ‘Talobbo sha/Danta sa/Murdha Sha’ 2489 -> ‘Ha’
USLD: USLD has a unique size for all the images that is 512*512 pixels. The intended hand position is placed in the middle of the majority of cases in this dataset. MSLD: The raw images are stored in MSLD so that researchers can make changes to the dataset. The use of various smartphones yields us a wide variety of image sizes. AMSLD: AMSLD has multi-scale annotated data, which is suitable for tasks like localization and classification. From many annotation formats, the YOLO DarkNet annotation has been selected. Each image has an annotation text file containing five numbers separated by white space. The initial number is an integer, and the rest are floating numbers. The first number of the file indicates the class ID corresponding to the label of that image. Class IDs are mapped in a separate text file named 'obj.names'. The second and third values are the beginning normalized coordinates, while the fourth and fifth define the bounding box's normalized width and height.
This dataset is supported by Research and Innovation Center, Khulna University, Khulna-9208, Bangladesh and all the data from this dataset is free to download, modify, and use. The previous version (Version 1) of this dataset contains the oral permission of the volunteers, and this one has written consent of the participants. Therefore, we encourage researchers to use this version (Version 2) for research objective.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Middle Point. The dataset can be utilized to gain insights into gender-based income distribution within the Middle Point population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middle Point median household income by race. You can refer the same here
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of pregnancies to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age, age-specific fertility rates, still births and abortions to map the estimated distributions of pregnancies for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2017. Costa Rica 1km pregnancies. Version 2.0 2015 estimates of numbers of pregnancies per grid square, with national totals adjusted to match national estimates on numbers of pregnancies made by the Guttmacher Institute (http://www.guttmacher.org) DOI: 10.5258/SOTON/WP00470
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Given the importance of ICT diffusion in the development of the financial sector, this analysis is an effort to analyze the transmission channels between the two in high-income and middle and low-income economies over 2001–2019. We have used three variables, including the ICT index, individuals using the internet, and mobile subscribers, to represent ICT and three indices, including the financial development index, financial institution index, and financial market index, to make our results reliable and robust. We utilized a GMM method for conducting the empirical analysis. Generally, our results imply that ICT diffusion positively impacts financial development in high-income economies and negatively impacts middle and low-income economies. Our findings suggest that middle- and low-income-economy policymakers should follow the footprint of the high-income economies and increase the role of ICT in the financial sector for its development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Middle Taylor Township, Pennsylvania, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/middle-taylor-township-pa-median-household-income-by-household-size.jpeg" alt="Middle Taylor Township, Pennsylvania median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middle Taylor township median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Middle township. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Middle township median household income by race. You can refer the same here