100+ datasets found
  1. o

    US Cities: Demographics

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, json
    Updated Jul 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

  2. N

    Brooklyn, New York Population Breakdown By Race (Excluding Ethnicity)...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Brooklyn, New York Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/brooklyn-ny-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brooklyn, New York
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Brooklyn borough by race. It includes the population of Brooklyn borough across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Brooklyn borough across relevant racial categories.

    Key observations

    The percent distribution of Brooklyn borough population by race (across all racial categories recognized by the U.S. Census Bureau): 39.26% are white, 28.99% are Black or African American, 0.59% are American Indian and Alaska Native, 12.04% are Asian, 0.05% are Native Hawaiian and other Pacific Islander, 10.23% are some other race and 8.84% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Brooklyn borough
    • Population: The population of the racial category (excluding ethnicity) in the Brooklyn borough is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Brooklyn borough total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Brooklyn borough Population by Race & Ethnicity. You can refer the same here

  3. N

    Twin Groves, AR Non-Hispanic Population Breakdown By Race Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Twin Groves, AR Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/twin-groves-ar-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Twin Groves, Arkansas
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Twin Groves by race. It includes the distribution of the Non-Hispanic population of Twin Groves across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Twin Groves across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Twin Groves, the largest racial group is Black or African American alone with a population of 159 (58.24% of the total Non-Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Twin Groves
    • Population: The population of the racial category (for Non-Hispanic) in the Twin Groves is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Twin Groves total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Twin Groves Population by Race & Ethnicity. You can refer the same here

  4. N

    Bethlehem, New York Population Breakdown By Race (Excluding Ethnicity)...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Bethlehem, New York Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/bethlehem-ny-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Bethlehem
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Bethlehem town by race. It includes the population of Bethlehem town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Bethlehem town across relevant racial categories.

    Key observations

    The percent distribution of Bethlehem town population by race (across all racial categories recognized by the U.S. Census Bureau): 88.01% are white, 2.09% are Black or African American, 0.03% are American Indian and Alaska Native, 3.71% are Asian, 1.50% are some other race and 4.65% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Bethlehem town
    • Population: The population of the racial category (excluding ethnicity) in the Bethlehem town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Bethlehem town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Bethlehem town Population by Race & Ethnicity. You can refer the same here

  5. Demographics Data Package

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). Demographics Data Package [Dataset]. https://www.johnsnowlabs.com/marketplace/demographics-data-package/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Description

    This data package consists of 26 datasets all containing statistical data relating to the population and particular groups within it belonging to different countries, mostly the United States.

  6. d

    ACS 5 Year Data by Ward

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated Jun 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). ACS 5 Year Data by Ward [Dataset]. https://catalog.data.gov/dataset/acs-5-year-data-by-ward
    Explore at:
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    Selected variables from the most recent 5 year ACS Community Survey (Released 2023) aggregated by Ward. Additional years will be added as they become available. The underlying algorithm to create the dataset calculates the percent of a census tract that falls within the boundaries of a given ward. Given that census tracts and ward boundaries are not aligned, these figures should be considered an estimate. Total Population in this Dataset: 2,649,803 Total Population of Chicago reported by ACS 2023: 2,664,452 % Difference: %-0.55 There are different approaches in common use for displaying Hispanic or Latino population counts. In this dataset, following the approach taken by the Census Bureau, a person who identifies as Hispanic or Latino will also be counted in the race category with which they identify. However, again following the Census Bureau data, there is also a column for White Not Hispanic or Latino. The City of Chicago is actively soliciting community input on how best to represent race, ethnicity, and related concepts in its data and policy. Every dataset, including this one, has a "Contact dataset owner" link in the Actions menu. You can use it to offer any input you wish to share or to indicate if you would be interested in participating in live discussions the City may host. Code can be found here: https://github.com/Chicago/5-Year-ACS-Survey-Data Ward Shapefile: https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Wards-2023-Map/cdf7-bgn3 Census Area Python Package Documentation: https://census-area.readthedocs.io/en/latest/index.html

  7. N

    Twin Groves, AR Population Breakdown By Race (Excluding Ethnicity) Dataset:...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Twin Groves, AR Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2e838f84-230c-11ef-bd92-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Twin Groves, Arkansas
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Twin Groves by race. It includes the population of Twin Groves across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Twin Groves across relevant racial categories.

    Key observations

    The percent distribution of Twin Groves population by race (across all racial categories recognized by the U.S. Census Bureau): 30.07% are white, 66.08% are Black or African American and 3.85% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Twin Groves
    • Population: The population of the racial category (excluding ethnicity) in the Twin Groves is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Twin Groves total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Twin Groves Population by Race & Ethnicity. You can refer the same here

  8. N

    Popular Baby Names

    • data.cityofnewyork.us
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +4more
    application/rdfxml +5
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2025). Popular Baby Names [Dataset]. https://data.cityofnewyork.us/Health/Popular-Baby-Names/25th-nujf
    Explore at:
    csv, tsv, application/rdfxml, application/rssxml, xml, jsonAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    Department of Health and Mental Hygiene (DOHMH)
    Description

    Popular Baby Names by Sex and Ethnic Group Data were collected through civil birth registration. Each record represents the ranking of a baby name in the order of frequency. Data can be used to represent the popularity of a name. Caution should be used when assessing the rank of a baby name if the frequency count is close to 10; the ranking may vary year to year.

  9. g

    Census, Demographic Data For Manhattan, New York City

    • geocommons.com
    Updated Jun 4, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census (2008). Census, Demographic Data For Manhattan, New York City [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jun 4, 2008
    Dataset provided by
    Census
    data
    Description

    This dataset provides highly detailed (Block Level) views of various demographics for Manhattan, New York city. this dataset includes information on age, race, sex, income, housing, and various other attributes. This data comes from the 2000 Us Census and was joined to the Census Tiger line files to create the output. enjoy!

  10. d

    U.S. Select Demographics by Census Block Groups

    • dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryan, Michael (2023). U.S. Select Demographics by Census Block Groups [Dataset]. http://doi.org/10.7910/DVN/UZGNMM
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bryan, Michael
    Area covered
    United States
    Description

    Overview This dataset re-shares cartographic and demographic data from the U.S. Census Bureau to provide an obvious supplement to Open Environments Block Group publications.These results do not reflect any proprietary or predictive model. Rather, they extract from Census Bureau results with some proportions and aggregation rules applied. For additional support or more detail, please see the Census Bureau citations below. Cartographics refer to shapefiles shared in the Census TIGER/Line publications. Block Group areas are updated annually, with major revisions accompanying the Decennial Census at the turn of each decade. These shapes are useful for visualizing estimates as a map and relating geographies based upon geo-operations like overlapping. This data is kept in a geodatabase file format and requires the geopandas package and its supporting fiona and DAL software. Demographics are taken from popular variables in the American Community Survey (ACS) including age, race, income, education and family structure. This data simply requires csv reader software or pythons pandas package. While the demographic data has many columns, the cartographic data has a very, very large column called "geometry" storing the many-point boundaries of each shape. So, this process saves the data separately, with demographics columns in a csv file and geometry in a gpd file needed an installation of geopandas, fiona and DAL software. More details on the ACS variables selected and derivation rules applied can be found in the commentary docstrings in the source code found here: https://github.com/OpenEnvironments/blockgroupdemographics. ## Files While the demographic data has many columns, the cartographic data has a very, very large column called "geometry" storing the many-point boundaries of each shape. So, this process saves the data separately, with demographics columns in a csv file named YYYYblcokgroupdemographics.csv. The cartographic column, 'geometry', is shared as file named YYYYblockgroupdemographics-geometry.pkl. This file needs an installation of geopandas, fiona and DAL software.

  11. d

    COVID-19 - Vaccinations by Region, Age, and Race-Ethnicity - Historical

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Dec 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). COVID-19 - Vaccinations by Region, Age, and Race-Ethnicity - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-vaccinations-by-region-age-and-race-ethnicity
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97. COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti

  12. Number of missing persons files U.S. 2024, by race

    • statista.com
    Updated Aug 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of missing persons files U.S. 2024, by race [Dataset]. https://www.statista.com/statistics/240396/number-of-missing-persons-files-in-the-us-by-race/
    Explore at:
    Dataset updated
    Aug 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, there were 301,623 cases filed by the National Crime Information Center (NCIC) where the race of the reported missing person was white. In the same year, 17,097 people whose race was unknown were also reported missing in the United States. What is the NCIC? The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide. Missing people in the United States A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.

  13. d

    U.S. Voting by Census Block Groups

    • search.dataone.org
    Updated Nov 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryan, Michael (2023). U.S. Voting by Census Block Groups [Dataset]. http://doi.org/10.7910/DVN/NKNWBX
    Explore at:
    Dataset updated
    Nov 9, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bryan, Michael
    Area covered
    United States
    Description

    PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau... Visit https://dataone.org/datasets/sha256%3A05707c1dc04a814129f751937a6ea56b08413546b18b351a85bc96da16a7f8b5 for complete metadata about this dataset.

  14. F1 Archive 1950-2022

    • kaggle.com
    zip
    Updated Jul 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rahil Parikh (2022). F1 Archive 1950-2022 [Dataset]. https://www.kaggle.com/datasets/rprkh15/f1-race-and-qualifying-data
    Explore at:
    zip(1760769 bytes)Available download formats
    Dataset updated
    Jul 25, 2022
    Authors
    Rahil Parikh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Formula One is the highest class of international racing for open-wheel single-seater racing cars sanctioned by the Fédération Internationale de l'Automobile (FIA). Ever since its inaugural season in 1950, Formula1 has been regarded as the pinnacle of motorsport.

    Content

    This dataset contains detailed information about qualifying and race results for all the tracks over the course of multiple seasons. There is a separate directory for each season. There are 2 sub-directories for each season, namely: Qualifying Results and Race Results. The Race Results directory contains an overall_race_results.csv file which summarizes the race results throughout the entire season. It also contains multiple .csv files for the results of each race in the season. The Qualifying Results directory contains multiple .csv files for the qualifying results before the start of each race.

    Note

    For the 1982 season and before the qualifying results contain only 1 entry in the file which is that of the polesitter. The lap times of the other drivers were not accounted for, and on the official website there is only 1 entry under the qualifying results.

    Inspiration

    F1 is one of my favorite sports and I almost never miss a race 😄

    The motivation behind creating this dataset was to learn more about web scraping and try to perform a statistical analysis of the data. Some of the things you could do with the entire dataset are as follows: - Identify the driver with the most poles - Compare qualifying times of different drivers (championship contenders, team-mates, etc) - Determine how often a particular driver out-qualifies his team-mate - Compare qualifying lap times of a race from previous seasons - Identify the driver with the most number of wins at a particular track - Analyze how the championship battle unfolded based on the number of points scored by the drivers (specially interesting for the 2021 f1 season 👀) - Identify drivers with the highest number of wins, podiums, DNFs, etc - Compare the average lap times of different tracks to identify the slowest and fastest tracks on the calendar - Compare the number of laps for each race in the season (Belgium 2021 being the clear winner 😂) - Find out who won the Driver's Championship based on the total number of points - Find out who won the Constructor's Championship based on the total number of points for each team

    Some Common F1 Terms You Might Come Across

    • DNF: Did Not Finish. Commonly used nomenclature for drivers that crashed/failed to complete the entire race
    • DNQ: Did Not Qualify. Eliminated missing values from the qualifying datasets by introducing this abbreviation for drivers who failed to qualify.
    • NC: Not Confirmed. For drivers that DNF the term NC is used in the Position column
    • DQ: Disqualified. Generally drivers are disqualified from races due to technical infringements or a breach of sporting regulations (Example: Sebastian Vettel was disqualified from the 2021 Hungarian Grand Prix due to fuel irregularites and stripped of all the points he earned from finishing the race in P2)

    Future Work

    As I collect more data for the previous seasons, I will create new versions for the dataset. The goal with this dataset is to create an archive of qualifying and race data from 1950-2021. The dataset will also be updated when the 2022 season commences.

  15. N

    Orlando, FL Population Breakdown By Race (Excluding Ethnicity) Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Orlando, FL Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/orlando-fl-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida, Orlando
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Orlando by race. It includes the population of Orlando across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Orlando across relevant racial categories.

    Key observations

    The percent distribution of Orlando population by race (across all racial categories recognized by the U.S. Census Bureau): 43.19% are white, 22.91% are Black or African American, 0.15% are American Indian and Alaska Native, 4.40% are Asian, 0.06% are Native Hawaiian and other Pacific Islander, 8.35% are some other race and 20.96% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Orlando
    • Population: The population of the racial category (excluding ethnicity) in the Orlando is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Orlando total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orlando Population by Race & Ethnicity. You can refer the same here

  16. g

    CTPP, Origin and Race Demographics by residence, Dallas TX , 2000

    • geocommons.com
    Updated Jun 2, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). CTPP, Origin and Race Demographics by residence, Dallas TX , 2000 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jun 2, 2008
    Dataset provided by
    Census Transportation planning package
    data
    Description

    This dataset shows the origin and race of residents. The data is part of the Census Transportation Planning Package (CTPP), and is the result of a cooperative effort between various groups including the State Departments of Transportation, U.S. Census Bureau, and the Federal Highway Administration. The data is a special tabulation of responses from households completing the decennial census long form. The data was collected in 2000 and is shown at tract level.

  17. f

    The list of the most common races and their virulence compositions.

    • datasetcatalog.nlm.nih.gov
    Updated Feb 20, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shang, Liping; Newton, Adrian C.; Zhan, Jiasui; Zhu, Wen; Yang, Lina (2013). The list of the most common races and their virulence compositions. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001673091
    Explore at:
    Dataset updated
    Feb 20, 2013
    Authors
    Shang, Liping; Newton, Adrian C.; Zhan, Jiasui; Zhu, Wen; Yang, Lina
    Description

    Incompatible reaction, indicating the race does not cause disease to the differential.*Compatible reaction, indicating the race can cause disease to the differential.

  18. i

    Emergency Visit Claims by Recipient Race, Gender, and Age Group

    • hub.mph.in.gov
    Updated Sep 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Emergency Visit Claims by Recipient Race, Gender, and Age Group [Dataset]. https://hub.mph.in.gov/dataset/emergency-visit-claims-by-recipient-race-gender-and-age-group
    Explore at:
    Dataset updated
    Sep 14, 2017
    Description

    Archived as of 6/26/2025: The datasets will no longer receive updates but the historical data will continue to be available for download. This dataset provides information related to emergency visit claims. It contains information about the total number of patients, total number of claims, and dollar amount paid, grouped by recipient race and gender. Restricted to claims with service date between 01/2012 to 12/2017. Restricted to top 100 most frequent primary diagnostic codes in ER claims from 2012 - 2017. ER claims are defined as claims with CPT codes 99281, 99282, 99283, 99284, and 99285. Providers are billing providers. If multiple diagnostic codes are attached to a claim, primary diagnosis is used.This data is for research purposes and is not intended to be used for reporting. Due to differences in geographic aggregation, time period considerations, and units of analysis, these numbers may differ from those reported by FSSA.

  19. T

    Public Postsecondary Annual Enrollment by Race and Gender

    • educationtocareer.data.mass.gov
    application/rdfxml +5
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MA Department of Higher Education (2025). Public Postsecondary Annual Enrollment by Race and Gender [Dataset]. https://educationtocareer.data.mass.gov/w/hx2h-9z86/default?cur=_lfKZwgxTnv&from=OeA7STi16Yh
    Explore at:
    json, tsv, application/rssxml, xml, csv, application/rdfxmlAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    MA Department of Higher Education
    Description

    This dataset contains the total annual unduplicated enrollment headcount and percentages by race and gender for undergraduate and graduate students at public community colleges and state universities in Massachusetts since 2014.

    This dataset is 1 of 2 datasets that is also published in the interactive Annual Enrollment dashboard on the Department of Higher Education Data Center:

    Public Postsecondary Annual Enrollment Public Postsecondary Annual Enrollment by Race and Gender

    Related datasets: Public Postsecondary Fall Enrollment Public Postsecondary Fall Enrollment by Race and Gender

    Notes: - Data appear as reported to the Massachusetts Department of Higher Education. - Annual enrollment refers to a 12 month enrollment period over one fiscal year (July 1 through June 30). - Figures published by DHE may differ slightly from figures published by other institutions and organizations due to differences in timing of publication, data definitions, and calculation logic. - Data for the University of Massachusetts are not included due to unique reporting requirements. See Fall Enrollment for HEIRS data on UMass enrollment. -The most common measure of enrollment is headcount of enrolled students. Annual headcount enrollment is unduplicated, meaning any individual student is only counted once per institution and fiscal year, even if they are enrolled in multiple terms. Enrollment can also be measured as full-time equivalent (FTE) students, a calculation based on the sum of credits carried by all enrolled students. In a fiscal year, 30 undergraduate credits = 1 undergraduate FTE, and 24 graduate credits = 1 graduate FTE at a state university.

  20. H

    2020 General Election Voting by US Census Block Group

    • dataverse.harvard.edu
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Bryan (2025). 2020 General Election Voting by US Census Block Group [Dataset]. http://doi.org/10.7910/DVN/NKNWBX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Michael Bryan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/

US Cities: Demographics

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
excel, csv, jsonAvailable download formats
Dataset updated
Jul 27, 2017
License

https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

Area covered
United States
Description

This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

Search
Clear search
Close search
Google apps
Main menu