Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Brooklyn borough by race. It includes the population of Brooklyn borough across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Brooklyn borough across relevant racial categories.
Key observations
The percent distribution of Brooklyn borough population by race (across all racial categories recognized by the U.S. Census Bureau): 39.26% are white, 28.99% are Black or African American, 0.59% are American Indian and Alaska Native, 12.04% are Asian, 0.05% are Native Hawaiian and other Pacific Islander, 10.23% are some other race and 8.84% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Brooklyn borough Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Twin Groves by race. It includes the distribution of the Non-Hispanic population of Twin Groves across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Twin Groves across relevant racial categories.
Key observations
Of the Non-Hispanic population in Twin Groves, the largest racial group is Black or African American alone with a population of 159 (58.24% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Twin Groves Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘NYC Most Popular Baby Names Over the Years’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/most-popular-baby-names-in-nyce on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Popular Baby Name Data In NYC from 2011-2014
Rows: 13962; Columns: 6
The data include items, such as:
- BRTH_YR: birth year the baby
- GNDR: gender
- ETHCTY: mother's ethnicity
- NM: baby's name
- CNT: count of the name
- RNK: ranking of the name
Source: NYC Open Data
https://data.cityofnewyork.us/Health/Most-Popular-Baby-Names-by-Sex-and-Mother-s-Ethnic/25th-nujf
This dataset was created by Data Society and contains around 10000 samples along with Nm, Rnk, technical information and other features such as: - Gndr - Ethcty - and more.
- Analyze Brth Yr in relation to Cnt
- Study the influence of Nm on Rnk
- More datasets
If you use this dataset in your research, please credit Data Society
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Twin Groves by race. It includes the population of Twin Groves across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Twin Groves across relevant racial categories.
Key observations
The percent distribution of Twin Groves population by race (across all racial categories recognized by the U.S. Census Bureau): 38.27% are white, 57.40% are Black or African American and 4.33% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Twin Groves Population by Race & Ethnicity. You can refer the same here
NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97. COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
According to the Wikipedia, an ultramarathon, also called ultra distance or ultra running, is any footrace longer than the traditional marathon length of 42.195 kilometres (26 mi 385 yd). Various distances are raced competitively, from the shortest common ultramarathon of 31 miles (50 km) to over 200 miles (320 km). 50k and 100k are both World Athletics record distances, but some 100 miles (160 km) races are among the oldest and most prestigious events, especially in North America.}
The data in this file is a large collection of ultra-marathon race records registered between 1798 and 2022 (a period of well over two centuries) being therefore a formidable long term sample. All data was obtained from public websites.
Despite the original data being of public domain, the race records, which originally contained the athlete´s names, have been anonymized to comply with data protection laws and to preserve the athlete´s privacy. However, a column Athlete ID has been created with a numerical ID representing each unique runner (so if Antonio Fernández participated in 5 races over different years, then the corresponding race records now hold his unique Athlete ID instead of his name). This way I have preserved valuable information.
The dataset contains 7,461,226 ultra-marathon race records from 1,641,168 unique athletes.
The following columns (with data types) are included:
The Event name column include country location information that can be derived to a new column, and similarly seasonal information can be found in the Event dates column beyond the Year of event (these can be extracted with a bit of processing).
The Event distance/length column describes the type of race, covering the most popular UM race distances and lengths, and some other specific modalities (multi-day, etc.):
Additionally, there is information of age, gender and speed (in km/h) in other columns.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Earth Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Earth, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Earth.
Key observations
Among the Hispanic population in Earth, regardless of the race, the largest group is of Mexican origin, with a population of 588 (94.84% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth Population by Race & Ethnicity. You can refer the same here
This dataset represents the popular last names in the United States for people of two or more races.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual two or more races student percentage from 2011 to 2023 for Tuckahoe Common School District vs. New York
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual two or more races student percentage from 2012 to 2023 for Dwight Common School vs. Illinois and Dwight Common SD 232 School District
Popular Baby Names by Sex and Ethnic Group Data were collected through civil birth registration. Each record represents the ranking of a baby name in the order of frequency. Data can be used to represent the popularity of a name. Caution should be used when assessing the rank of a baby name if the frequency count is close to 10; the ranking may vary year to year.
This layer contains a Vermont-only subset of census tract level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, BLOCK, BLKGRP, and TBLKGRP.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual tract level, since this data has been protected using differential privacy.*VCGI exported a Vermont-only subset of the nation-wide layer to produce this layer--with fields limited to this popular subset: OBJECTID: OBJECTID GEOID: Geographic Record Identifier NAME: Area Name-Legal/Statistical Area Description (LSAD) Term-Part Indicator County_Name: County Name State_Name: State Name P0010001: Total Population P0010003: Population of one race: White alone P0010004: Population of one race: Black or African American alone P0010005: Population of one race: American Indian and Alaska Native alone P0010006: Population of one race: Asian alone P0010007: Population of one race: Native Hawaiian and Other Pacific Islander alone P0010008: Population of one race: Some Other Race alone P0020002: Hispanic or Latino Population P0020003: Non-Hispanic or Latino Population P0030001: Total population 18 years and over H0010001: Total housing units H0010002: Total occupied housing units H0010003: Total vacant housing units P0050001: Total group quarters population PCT_P0030001: Percent of Population 18 Years and Over PCT_P0020002: Percent Hispanic or Latino PCT_P0020005: Percent White alone, not Hispanic or Latino PCT_P0020006: Percent Black or African American alone, not Hispanic or Latino PCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or Latino PCT_P0020008: Percent Asian alone, not Hispanic or Latino PCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or Latino PCT_P0020010: Percent Some Other Race alone, not Hispanic or Latino PCT_P0020011: Percent Population of two or more races, not Hispanic or Latino PCT_H0010002: Percent of Housing Units that are Occupied PCT_H0010003: Percent of Housing Units that are Vacant SUMLEV: Summary Level REGION: Region DIVISION: Division COUNTY: County (FIPS) COUNTYNS: County (NS) TRACT: Census Tract AREALAND: Area (Land) AREAWATR: Area (Water) INTPTLON: Internal Point (Longitude) INTPTLAT: Internal Point (Latitude) BASENAME: Area Base Name POP100: Total Population Count HU100: Total Housing Count *To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual tracts will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The 2010 Census Blocks with Demographic Profile dataset was produced by joining the U.S.Census Bureau's 2010 TIGER/Line File-derived Census Blocks for Fulton County with selected 2010 Summary File 1 data fields. The result is a census block boundary layer attributed with some the more commonly used demographics such as total population, population by race, population by age group, median age, and housing and household characteristics. Because the dataset was derived from the TIGER/Line File Census Blocks, the U.S.Census Bureau's metadata for that dataset is provided below.The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census Blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that data users think census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2010 Census blocks nest within every other 2010 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up to the appropriate geographic areas. Census blocks cover all territory in the United States, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands). Blocks are the smallest geographic areas for which the Census Bureau publishes data from the decennial census. A block may consist of one or more faces.
🇺🇸 미국 English Selected variables from the most recent 5 year ACS Community Survey (Released 2023) aggregated by Ward. Additional years will be added as they become available. The underlying algorithm to create the dataset calculates the percent of a census tract that falls within the boundaries of a given ward. Given that census tracts and ward boundaries are not aligned, these figures should be considered an estimate. Total Population in this Dataset: 2,649,803 Total Population of Chicago reported by ACS 2023: 2,664,452 % Difference: %-0.55 There are different approaches in common use for displaying Hispanic or Latino population counts. In this dataset, following the approach taken by the Census Bureau, a person who identifies as Hispanic or Latino will also be counted in the race category with which they identify. However, again following the Census Bureau data, there is also a column for White Not Hispanic or Latino. The City of Chicago is actively soliciting community input on how best to represent race, ethnicity, and related concepts in its data and policy. Every dataset, including this one, has a "Contact dataset owner" link in the Actions menu. You can use it to offer any input you wish to share or to indicate if you would be interested in participating in live discussions the City may host. Code can be found here: https://github.com/Chicago/5-Year-ACS-Survey-Data Ward Shapefile: https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Wards-2023-Map/cdf7-bgn3 Census Area Python Package Documentation: https://census-area.readthedocs.io/en/latest/index.html
In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...
In order to facilitate public review and access, enrollment data published on the Open Data Portal is provided as promptly as possible after the end of each month or year, as applicable to the data set. Due to eligibility policies and operational processes, enrollment can vary slightly after publication. Please be aware of the point-in-time nature of the published data when comparing to other data published or shared by the Department of Social Services, as this data may vary slightly.
As a general practice, for monthly data sets published on the Open Data Portal, DSS will continue to refresh the monthly enrollment data for three months, after which time it will remain static. For example, when March data is published the data in January and February will be refreshed. When April data is published, February and March data will be refreshed, but January will not change. This allows the Department to account for the most common enrollment variations in published data while also ensuring that data remains as stable as possible over time. In the event of a significant change in enrollment data, the Department may republish reports and will notate such republication dates and reasons accordingly. In March 2020, Connecticut opted to add a new Medicaid coverage group: the COVID-19 Testing Coverage for the Uninsured. Enrollment data on this limited-benefit Medicaid coverage group is being incorporated into Medicaid data effective January 1, 2021. Enrollment data for this coverage group prior to January 1, 2021, was listed under State Funded Medical. An historical accounting of enrollment of the specific coverage group starting in calendar year 2020 will also be published separately. DSS CY 2021 Town counts - Number of people enrolled in DSS services in the calendar year 2021, by township and race. NOTE: On April 22, 2019 the methodology for determining HUSKY A Newborn recipients changed, which caused an increase of recipients for that benefit starting in October 2016. We now count recipients recorded in the ImpaCT system as well as in the HIX system for that assistance type, instead using HIX exclusively. Also, the methodology for determining the address of the recipients changed: 1. The address of a recipient in the ImpaCT system is now correctly determined specific to that month instead of using the address of the most recent month. This resulted in some shuffling of the recipients among townships starting in October 2016. 2. If, in a given month, a recipient has benefit records in both the HIX system and in the ImpaCT system, the address of the recipient is now calculated as follows to resolve conflicts: Use the residential address in ImpaCT if it exists, else use the mailing address in ImpaCT if it exists, else use the address in HIX. This resulted in a reduction in counts for most townships starting in March 2017 because a single address is now used instead of two when the systems do not agree. NOTE: On February 14 2019, the enrollment counts for 2012-2015 across all programs were updated to account for an error in the data integration process. As a result, the count of the number of people served increased by 13% for 2012, 10% for 2013, 8% for 2014 and 4% for 2015. Counts for 2016, 2017 and 2018 remain unchanged. NOTE: On 1/16/2019 these counts were revised to count a recipient in all locations that recipient resided in that year. NOTE: On 1/1/2019 the counts were revised to count a recipient in only one town per year even when the recipient moved within the year. The most recent address is used. (But this was reversed later, see above.)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Sierra Nevada region's American Indian population. The variable AIAN_ALN_AND_MULTIRACE includes BOTH individuals who select American Indian or Alaska Native as their sole racial identity (they only identify as American Indian), AND individuals who select American Indian / Alaska Native as one of two or more racial identities (they partly identify as American Indian) in response to the Census questionnaire. IMPORTANT: this self reported ancestry and Tribal membership are distinct identities and one does not automatically imply the other. These data should not be interpreted as a distribution of "Tribal people."
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as American Indian / Alaska Native alone to the proportion of all people that live within the 775 block groups in the Sierra Nevada RRK region that identify as American Indian / Alaska native alone. Example: if 5.2% of people in a block group identify as AIANALN, the block group has twice the proportion of AIANALN individuals compared to the Sierra Nevada RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then AIANALN individuals are highly concentrated locally.
We assembled 1.4 million National Ocean Service (NOS) bathymetric soundings from 98 lead-line and single-beam echosounder hydrographic surveys conducted from 1910 to 1999 in Cook Inlet, Alaska. These bathymetry data are available from the National Geophysical Data Center (NGDC: http://www.ngdc.noaa.gov), which archives and distributes data that were originally collected by the NOS and others. While various bathymetry data have been downloaded previously from NGDC, compiled, and used for a variety of projects, our effort differed in that we compared and corrected the digital bathymetry by studying the original analog source documents - digital versions of the original survey maps, called smooth sheets. Our editing included deleting erroneous and superseded values, digitizing missing values, and properly aligning all data sets to a common, modern datum. There were six areas where these older surveys were superseded by compilations of reduced-resolution multibeam surveys. We digitized 12,000 features, such as rocky reefs, kelp beds, rocks and islets, adding them to what was originally available, and creating the most thorough source (n = 18,000) of these typically shallow, inshore features. We also digitized 2,418 km of the mainland and 529 km of island shoreline, generally at a resolution of 1:20,000, and digitized 9,271 verbal surficial sediment descriptions from the smooth sheets. The depth surface, shoreline, inshore features, and sediment data sets are mostly produced at a scale of 1:20,000.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual two or more races student percentage from 2012 to 2023 for Edinburg Common School vs. New York and Edinburg Common School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Brooklyn borough by race. It includes the population of Brooklyn borough across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Brooklyn borough across relevant racial categories.
Key observations
The percent distribution of Brooklyn borough population by race (across all racial categories recognized by the U.S. Census Bureau): 39.26% are white, 28.99% are Black or African American, 0.59% are American Indian and Alaska Native, 12.04% are Asian, 0.05% are Native Hawaiian and other Pacific Islander, 10.23% are some other race and 8.84% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Brooklyn borough Population by Race & Ethnicity. You can refer the same here