60 datasets found
  1. Deaths by cancer in the U.S. 1950-2022

    • statista.com
    • ai-chatbox.pro
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Elflein, Deaths by cancer in the U.S. 1950-2022 [Dataset]. https://www.statista.com/topics/1192/cancer-in-the-us/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    John Elflein
    Area covered
    United States
    Description

    Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.

  2. Data from: County-level cumulative environmental quality associated with...

    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). County-level cumulative environmental quality associated with cancer incidence. [Dataset]. https://catalog.data.gov/dataset/county-level-cumulative-environmental-quality-associated-with-cancer-incidence
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Population based cancer incidence rates were abstracted from National Cancer Institute, State Cancer Profiles for all available counties in the United States for which data were available. This is a national county-level database of cancer data that are collected by state public health surveillance systems. All-site cancer is defined as any type of cancer that is captured in the state registry data, though non-melanoma skin cancer is not included. All-site age-adjusted cancer incidence rates were abstracted separately for males and females. County-level annual age-adjusted all-site cancer incidence rates for years 2006–2010 were available for 2687 of 3142 (85.5%) counties in the U.S. Counties for which there are fewer than 16 reported cases in a specific area-sex-race category are suppressed to ensure confidentiality and stability of rate estimates; this accounted for 14 counties in our study. Two states, Kansas and Virginia, do not provide data because of state legislation and regulations which prohibit the release of county level data to outside entities. Data from Michigan does not include cases diagnosed in other states because data exchange agreements prohibit the release of data to third parties. Finally, state data is not available for three states, Minnesota, Ohio, and Washington. The age-adjusted average annual incidence rate for all counties was 453.7 per 100,000 persons. We selected 2006–2010 as it is subsequent in time to the EQI exposure data which was constructed to represent the years 2000–2005. We also gathered data for the three leading causes of cancer for males (lung, prostate, and colorectal) and females (lung, breast, and colorectal). The EQI was used as an exposure metric as an indicator of cumulative environmental exposures at the county-level representing the period 2000 to 2005. A complete description of the datasets used in the EQI are provided in Lobdell et al. and methods used for index construction are described by Messer et al. The EQI was developed for the period 2000– 2005 because it was the time period for which the most recent data were available when index construction was initiated. The EQI includes variables representing each of the environmental domains. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., L. Messer, K. Rappazzo , C. Gray, S. Grabich , and D. Lobdell. County-level environmental quality and associations with cancer incidence#. Cancer. John Wiley & Sons Incorporated, New York, NY, USA, 123(15): 2901-2908, (2017).

  3. d

    Percent Receiving Breast Cancer Screenings Time Series

    • data.ore.dc.gov
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Percent Receiving Breast Cancer Screenings Time Series [Dataset]. https://data.ore.dc.gov/datasets/percent-receiving-breast-cancer-screenings-time-series
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents.

    Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data

    Why This Matters

    Breast cancer is the most commonly diagnosed cancer in women and people assigned female at birth (AFAB) and the second leading cause of cancer death in the U.S. Breast cancer screenings can save lives by helping to detect breast cancer in its early stages when treatment is more effective.

    While non-Hispanic white women and AFAB individuals are more likely to be diagnosed with breast cancer than their counterparts of other races and ethnicities, non-Hispanic Black women and AFAB individuals die from breast cancer at a significantly higher rate than their counterparts races and ethnicities.

    Later-stage diagnoses and prolonged treatment duration partly explain these disparities in mortality rate. Structural barriers to quality health care, insurance, education, affordable housing, and sustainable income that disproportionately affect communities of color also drive racial inequities in breast cancer screenings and mortality.

    The District Response

    Project Women Into Staying Healthy (WISH) provides free breast and cervical cancer screenings to uninsured or underinsured women and AFAB adults aged 21 to 64. Patient navigation, transportation assistance, and cancer education are also provided.

    DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide breast cancer screening services.

    DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.

  4. d

    Percent Receiving Breast Cancer Screenings

    • data.ore.dc.gov
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Percent Receiving Breast Cancer Screenings [Dataset]. https://data.ore.dc.gov/datasets/percent-receiving-breast-cancer-screenings
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents.

    Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data

    Why This Matters

    Breast cancer is the most commonly diagnosed cancer in women and people assigned female at birth (AFAB) and the second leading cause of cancer death in the U.S. Breast cancer screenings can save lives by helping to detect breast cancer in its early stages when treatment is more effective.

    While non-Hispanic white women and AFAB individuals are more likely to be diagnosed with breast cancer than their counterparts of other races and ethnicities, non-Hispanic Black women and AFAB individuals die from breast cancer at a significantly higher rate than their counterparts races and ethnicities.

    Later-stage diagnoses and prolonged treatment duration partly explain these disparities in mortality rate. Structural barriers to quality health care, insurance, education, affordable housing, and sustainable income that disproportionately affect communities of color also drive racial inequities in breast cancer screenings and mortality.

    The District Response

    Project Women Into Staying Healthy (WISH) provides free breast and cervical cancer screenings to uninsured or underinsured women and AFAB adults aged 21 to 64. Patient navigation, transportation assistance, and cancer education are also provided.

    DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide breast cancer screening services.

    DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.

  5. Cancer incidence rates in U.S. states in 2021

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Elflein, Cancer incidence rates in U.S. states in 2021 [Dataset]. https://www.statista.com/topics/1192/cancer-in-the-us/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    John Elflein
    Area covered
    United States
    Description

    In 2021, Kentucky reported the highest cancer incidence rate in the United States, with around 510 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2021.

  6. p

    Cervical Cancer Risk Classification - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Cervical Cancer Risk Classification - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/cervical-cancer-risk-classification
    Explore at:
    Dataset updated
    Oct 7, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.

  7. Deaths by cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

  8. d

    Percent Receiving Colorectal Cancer Screenings

    • data.ore.dc.gov
    • racial-equity-dashboard-dcgis.hub.arcgis.com
    Updated Sep 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Percent Receiving Colorectal Cancer Screenings [Dataset]. https://data.ore.dc.gov/datasets/percent-receiving-colorectal-cancer-screenings
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents. Margins of error are estimated at the 90% confidence level.

    Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data

    Why This Matters

    Colorectal cancer is the third leading cause of cancer death in the U.S. for men and women. Although colorectal cancer is most common among people aged 65 to 74, there has been an increase in incidences among people aged 40 to 49.

    Nationally, Black people are disproportionately likely to both have colorectal cancer and die from it. Hispanic residents, and especially those with limited English proficiency, report having the lowest rate of colorectal cancer screenings.

    Racial disparities in education, poverty, health insurance coverage, and English language proficiency are all factors that contribute to racial gaps in receiving colorectal cancer screenings. Increased colorectal cancer screening utilization has been shown to nearly erase the racial disparities in the death rate of colorectal cancer.

    The District Response

    The Colorectal Cancer Control Program (DC3C) aims to reduce colon cancer incidence and mortality by increasing colorectal cancer screening rates among District residents.

    DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide colorectal cancer screening services.

    DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.

  9. NCHS - Potentially Excess Deaths from the Five Leading Causes of Death

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Potentially Excess Deaths from the Five Leading Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-potentially-excess-deaths-from-the-five-leading-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.

  10. f

    Data from: Comparing Urinary Glycoproteins among Three Urogenital Cancers...

    • figshare.com
    xlsx
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shao-Yung Chen; Tung-Shing Mamie Lih; Qing Kay Li; Hui Zhang (2023). Comparing Urinary Glycoproteins among Three Urogenital Cancers and Identifying Prostate Cancer-Specific Glycoproteins [Dataset]. http://doi.org/10.1021/acsomega.1c05223.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    ACS Publications
    Authors
    Shao-Yung Chen; Tung-Shing Mamie Lih; Qing Kay Li; Hui Zhang
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Prostate cancer, bladder cancer, and renal cancers are major urogenital cancers. Of which, prostate cancer is the most commonly diagnosed and second leading cause of cancer death for men in the United States. For urogenital cancers, urine is considered as proximate body fluid to the tumor site for developing non-invasiveness tests. However, the specific molecular signatures from different urogenital cancers are needed to relate changes in urine to various cancer detections. Herein, we utilized a previously published C4-Tip and C18/MAX-Tip workflow for enrichment of glycopeptides from urine samples and evaluated urinary glycopeptides for its cancer specificity. We analyzed 66 urine samples from bladder cancer (n = 27), prostate cancer (n = 4), clear cell renal cell carcinoma (ccRCC, n = 3), and benign plastic hyperplasia (BPH, n = 32) and then compared them with a previous publication that reported glycopeptides associated with aggressive prostate cancer (Gleason score ≥ 8). We further demonstrated the cancer specificity of the glycopeptides associated with aggressive prostate cancer. In this study, a total of 33 glycopeptides were identified to be specifically differentially expressed in prostate cancer compared to other urogenital cancer types as well as BPH urines. By cross-comparison with our previous urinary glycoproteomic dataset for aggressive prostate cancer, we reported a total of four glycopeptides from glycoproteins DSC2, MGAM, PIK3IP1, and CD55, commonly identified to be prostate cancer-specific. Together, these results deepen our understanding of the urinary glycoproteins associated with urogenital cancer types and expand our knowledge of the cancer specificity of urinary glycoproteins among urogenital cancer progression.

  11. f

    Relative survival for 10 most common cancer sitesa by metropolitan and...

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taylor D. Ellington; S. Jane Henley; Reda J. Wilson; Virginia Senkomago; Manxia Wu; Vicki Benard; Lisa C. Richardson (2023). Relative survival for 10 most common cancer sitesa by metropolitan and non-metropolitan statusb- United States, 2007–2016c. [Dataset]. http://doi.org/10.1371/journal.pone.0284051.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Taylor D. Ellington; S. Jane Henley; Reda J. Wilson; Virginia Senkomago; Manxia Wu; Vicki Benard; Lisa C. Richardson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Relative survival for 10 most common cancer sitesa by metropolitan and non-metropolitan statusb- United States, 2007–2016c.

  12. D

    Lung Cancer Diagnostic Tests Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Lung Cancer Diagnostic Tests Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-lung-cancer-diagnostic-tests-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Lung Cancer Diagnostic Tests Market Outlook



    The lung cancer diagnostic tests market size was valued at USD 2.5 billion in 2023 and is projected to reach USD 6.1 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 10.5% during the forecast period. This substantial growth can be attributed to the rising prevalence of lung cancer globally, advancements in diagnostic technologies, and increasing awareness regarding early detection and treatment of lung cancer. The growing aging population and the high incidence of smoking, which is a leading cause of lung cancer, further propel the demand for diagnostic tests.



    The increasing prevalence of lung cancer is one of the primary drivers of market growth. Lung cancer remains the leading cause of cancer-related deaths worldwide, necessitating the development of more accurate and early diagnostic methods. With advancements in medical technology, such as molecular diagnostics and non-invasive imaging techniques, the accuracy and efficiency of lung cancer diagnosis have significantly improved. These innovations not only enhance the detection rate but also facilitate personalized treatment plans, thereby improving patient outcomes.



    Furthermore, government initiatives and funding for cancer research play a crucial role in market expansion. Many countries are investing heavily in cancer research, leading to the development of new diagnostic tools and techniques. For instance, organizations such as the National Cancer Institute (NCI) in the United States provide substantial grants for lung cancer research, fostering innovations in diagnostics. In addition, public awareness campaigns and screening programs conducted by healthcare organizations and governments encourage early diagnosis, which is vital for successful treatment and survival rates.



    The integration of artificial intelligence (AI) and machine learning in diagnostic tools is another significant factor contributing to market growth. AI algorithms can analyze medical images with high precision, aiding radiologists in identifying lung cancer at earlier stages. Moreover, AI-driven software can evaluate large datasets from genetic and molecular tests, providing insights into the most effective treatment options based on individual patient profiles. This technological advancement not only enhances the accuracy of diagnostics but also reduces the time required for analysis, thereby increasing the efficiency of healthcare services.



    The EGFR Mutation Test is a pivotal advancement in the realm of lung cancer diagnostics, offering a more personalized approach to treatment. This test specifically identifies mutations in the Epidermal Growth Factor Receptor (EGFR) gene, which are often present in non-small cell lung cancer (NSCLC) patients. By detecting these mutations, healthcare providers can tailor therapies that target the specific genetic alterations, thereby improving treatment efficacy and patient outcomes. The growing adoption of EGFR Mutation Tests underscores the shift towards precision medicine, where treatments are increasingly customized based on individual genetic profiles. This approach not only enhances the effectiveness of therapies but also minimizes adverse effects, as treatments are more accurately aligned with the patient's unique genetic makeup.



    Regionally, North America holds the largest share of the lung cancer diagnostic tests market, followed by Europe and Asia Pacific. The dominance of North America can be attributed to the presence of advanced healthcare infrastructure, high healthcare expenditure, and a robust research landscape. The Asia Pacific region, however, is expected to witness the highest growth rate during the forecast period, driven by increasing healthcare investments, growing awareness about lung cancer, and rising incidences of the disease in countries like China and India. The growing middle-class population and improving healthcare access in these countries further support market growth.



    Test Type Analysis



    The lung cancer diagnostic tests market is segmented by test type into imaging tests, sputum cytology, tissue biopsy, molecular tests, and others. Imaging tests are one of the most commonly used diagnostic methods for lung cancer detection. Techniques such as X-rays, CT scans, and PET scans provide detailed visuals of the lungs, helping in identifying abnormal growths or tumors. The non-invasive nature of these tests and their ability to provide quick results make them a preferred choice among healthcare

  13. a

    Lung Cancer Mortality

    • ph-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +1more
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Lung Cancer Mortality [Dataset]. https://ph-lacounty.hub.arcgis.com/datasets/lung-cancer-mortality
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  14. f

    Subtypes of Native American ancestry and leading causes of death: Mapuche...

    • plos.figshare.com
    tiff
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justo Lorenzo Bermejo; Felix Boekstegers; Rosa González Silos; Katherine Marcelain; Pablo Baez Benavides; Carol Barahona Ponce; Bettina Müller; Catterina Ferreccio; Jill Koshiol; Christine Fischer; Barbara Peil; Janet Sinsheimer; Macarena Fuentes Guajardo; Olga Barajas; Rolando Gonzalez-Jose; Gabriel Bedoya; Maria Cátira Bortolini; Samuel Canizales-Quinteros; Carla Gallo; Andres Ruiz Linares; Francisco Rothhammer (2023). Subtypes of Native American ancestry and leading causes of death: Mapuche ancestry-specific associations with gallbladder cancer risk in Chile [Dataset]. http://doi.org/10.1371/journal.pgen.1006756
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS Genetics
    Authors
    Justo Lorenzo Bermejo; Felix Boekstegers; Rosa González Silos; Katherine Marcelain; Pablo Baez Benavides; Carol Barahona Ponce; Bettina Müller; Catterina Ferreccio; Jill Koshiol; Christine Fischer; Barbara Peil; Janet Sinsheimer; Macarena Fuentes Guajardo; Olga Barajas; Rolando Gonzalez-Jose; Gabriel Bedoya; Maria Cátira Bortolini; Samuel Canizales-Quinteros; Carla Gallo; Andres Ruiz Linares; Francisco Rothhammer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Chile
    Description

    Latin Americans are highly heterogeneous regarding the type of Native American ancestry. Consideration of specific associations with common diseases may lead to substantial advances in unraveling of disease etiology and disease prevention.Here we investigate possible associations between the type of Native American ancestry and leading causes of death. After an aggregate-data study based on genome-wide genotype data from 1805 admixed Chileans and 639,789 deaths, we validate an identified association with gallbladder cancer relying on individual data from 64 gallbladder cancer patients, with and without a family history, and 170 healthy controls. Native American proportions were markedly underestimated when the two main types of Native American ancestry in Chile, originated from the Mapuche and Aymara indigenous peoples, were combined together. Consideration of the type of Native American ancestry was crucial to identify disease associations. Native American ancestry showed no association with gallbladder cancer mortality (P = 0.26). By contrast, each 1% increase in the Mapuche proportion represented a 3.7% increased mortality risk by gallbladder cancer (95%CI 3.1–4.3%, P = 6×10−27). Individual-data results and extensive sensitivity analyses confirmed the association between Mapuche ancestry and gallbladder cancer. Increasing Mapuche proportions were also associated with an increased mortality due to asthma and, interestingly, with a decreased mortality by diabetes. The mortality due to skin, bladder, larynx, bronchus and lung cancers increased with increasing Aymara proportions. Described methods should be considered in future studies on human population genetics and human health. Complementary individual-based studies are needed to apportion the genetic and non-genetic components of associations identified relying on aggregate-data.

  15. Head and Neck Cancer Diagnostic Methods Market Analysis North America,...

    • technavio.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Head and Neck Cancer Diagnostic Methods Market Analysis North America, Europe, Asia, Rest of World (ROW) - US, Germany, France, China, Japan - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/head-and-neck-cancer-diagnostics-market-industry-analysis
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    France, Japan, China, Germany, United States, Global
    Description

    Snapshot img

    Head And Neck Cancer Diagnostics Market Size 2024-2028

    The head and neck cancer diagnostics market size is forecast to increase by USD 6.3 billion at a CAGR of 13.64% between 2023 and 2028.

    The market is experiencing significant growth due to the rising incidences of head and neck cancers. This trend is driven by the increasing awareness and early detection of these cancers, leading to a higher demand for accurate and efficient diagnostic tools. Additionally, the use of immunotherapy in head and neck cancer treatment is on the rise, necessitating advanced diagnostic methods to identify the presence of these cancers and determine the most effective treatment options. However, frequent product recalls due to safety concerns and regulatory issues pose a challenge to market growth. It is essential for market players to address these challenges by ensuring stringent quality control measures and adhering to regulatory guidelines to maintain consumer trust and confidence.

    What will be the Size of the Head And Neck Cancer Diagnostics Market during the Forecast Period?

    Request Free SampleThe market encompasses a range of diagnostic procedures and devices used to identify various types of cancer In the head and neck region, including oropharyngeal and throat cancer. Key diagnostic tools include physical exams, biopsies, and imaging modalities such as endoscopy, MRI, CT, PET/CT, chest imaging, and diagnostic devices. Radiologists and pathologists play crucial roles in interpreting these diagnostic results. Novel technologies, such as molecular and genetic testing, are also gaining traction In the market. The market is experiencing significant growth due to increasing cancer incidences worldwide, a growing focus on early detection, and rising healthcare expenditure. Personal healthcare spending and hospital spending on cancer treatment are major drivers of market growth.Diagnostic imaging and prescription drugs are significant components of the market, while dental care is also becoming increasingly relevant due to the link between oral health and head and neck cancers.

    How is this Head And Neck Cancer Diagnostics Industry segmented and which is the largest segment?

    The head and neck cancer diagnostics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments. Diagnostic MethodsBiopsy and blood testsImagingEndoscopyDental diagnosticsEnd-userHospitalsSpecialty clinicsAmbulatory surgical centersOthersGeographyNorth AmericaUSEuropeGermanyFranceAsiaChinaJapanRest of World (ROW)

    By Diagnostic Methods Insights

    The biopsy and blood tests segment is estimated to witness significant growth during the forecast period. The global head and neck cancer diagnostic market is primarily driven by the prevalence of oropharyngeal cancer and thyroid nodule assessment. Biopsy and blood tests are the largest diagnostic segments due to their significance in confirming cancer diagnoses. A biopsy involves the removal of tissue or cells for laboratory analysis, with incisional biopsies being commonly used for oral cancer diagnosis. Diagnostic imaging techniques, including endoscopy, MRI, CT, PET/CT, and chest imaging, complement biopsies in identifying cancerous growths. Diagnostic devices, genomic testing, tumor sequencing, molecular profiling, and genetic mutation analysis are emerging technologies in head and neck cancer diagnostics. Reimbursement issues and economic strategies pose challenges to market growth.Early detection and advancements in targeted therapy and immunotherapy are significant trends. Key players In the market include Viome Life Science, CancerDetect, GE Healthcare, and others. Skilled physicians, software technologies, and telemedicine are transforming diagnostic practices. Healthcare expenditure, prescription drugs, dental care, sedentary lifestyle, and chronic diseases contribute to market demand.

    Get a glance at the market report of various segments Request Free Sample

    The Biopsy and blood tests segment was valued at USD 1.64 billion in 2018 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 40% to the growth of the global market during the forecast period. Technavio’s analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    For more insights on the market size of various regions, Request Free Sample

    The market in North America is expected to dominate the global landscape due to the region's high incidence of head and neck cancers, particularly In the US. Notable market participants, such as GE Healthcare and Varian Medical Systems, are headquartered In the US, ensuring the availability of advanced diagnostic equipment.

  16. Death rate by age and sex in the U.S. 2021

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Death rate by age and sex in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241572/death-rate-by-age-and-sex-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.

  17. Reminding Patients of the Important of Colorectal Cancer Screening Results...

    • data.niaid.nih.gov
    xml
    Updated Nov 15, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2008). Reminding Patients of the Important of Colorectal Cancer Screening Results in Patient-Initiated Promoting Colorectal Cancer Screening Via Colonoscopy [Dataset]. https://data.niaid.nih.gov/resources?id=2119839
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Nov 15, 2008
    Area covered
    United States
    Variables measured
    Clinical
    Description

    Colorectal cancer is the third most common cancer diagnosed and third leading cause of cancer-related deaths in the United States for both men and women. The American Cancer Society (ACS) estimates about 108,070 new cases of colon cancer and 40,740 new cases of rectal cancer will be diagnosed, and about 49,960 deaths will occur as a result of this devastating disease in 2008. Over the last 20 years, the death rate for this cancer has been dropping as a result of screening and early detection of cancer. In 2007, ACS reported that early-stage colorectal cancer had a survival rate close to 80%, and up to 9,632 deaths could be prevented each year if eligible patients received screening when necessary. However, despite the proven efficacy of colorectal cancer (CRC) screening, only about 50% of eligible US patients are currently being screened. Specific Aims The central hypothesis of this proposal is that patient-initiated prompting of primary care physicians of the patient’s interest in screening will increase referrals for CRC screening. The following three areas will be investigated during this research: 1. To determine whether a communication tool provided to patients will initiate a conversation with their primary care physicians about CRC screening, especially via colonoscopy. 2. To determine whether this tool will impact referral patterns for screening, especially, although not primarily, among poor and underserved populations. 3. To determine whether differences exist in regard to patient-physician communication patterns about screening among residents and faculties in the fields of internal medicine and family practice clinics. At the close of the investigators study, the investigators wish to organize quantifiable data demonstrating how patient-initiated prompting of primary care physicians for CRC screening increases early detection and decreases potential mortality from colorectal cancer. This data will inform a second, larger study to pursue the questions surrounding patient-initiated prompting in

  18. In-Vitro Colorectal Cancer Screening Tests - South America Analysis and...

    • store.globaldata.com
    Updated Aug 1, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GlobalData UK Ltd. (2013). In-Vitro Colorectal Cancer Screening Tests - South America Analysis and Market Forecasts [Dataset]. https://store.globaldata.com/report/in-vitro-colorectal-cancer-screening-tests-south-america-analysis-and-market-forecasts/
    Explore at:
    Dataset updated
    Aug 1, 2013
    Dataset provided by
    GlobalDatahttps://www.globaldata.com/
    Authors
    GlobalData UK Ltd.
    License

    https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/

    Time period covered
    2013 - 2017
    Description

    Colorectal cancer (CRC) is the third most commonly diagnosed cancer, and the second most common cause of mortality amongst cancer patients. Prognosis is directly related to early diagnosis, with survival rates dramatically improved by early diagnosis and treatment. Thanks to the introduction of CRC screening programs, mortality in the developed countries is falling; however incidence continues to rise as a result of diet and increasingly sedentary lifestyles. While historically, colorectal cancer incidence in the developing world is low, in recent years, disease diagnosis rates have dramatically increased, as a result of changing lifestyles, awareness and improved access to medical services. CRC screening can improve survival rates, and reduce the overall cost of patient treatment. Read More

  19. Gynecological Cancers Therapeutics Market Analysis North America, Europe,...

    • technavio.com
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Gynecological Cancers Therapeutics Market Analysis North America, Europe, Asia, Rest of World (ROW) - US, Canada, Germany, UK, China - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/gynecological-cancers-therapeutics-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 26, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United Kingdom, China, Germany, United States, Global
    Description

    Snapshot img

    Gynecological Cancers Therapeutics Market Size 2024-2028

    The gynecological cancers therapeutics market size is forecast to increase by USD 19.15 billion at a CAGR of 15.83% between 2023 and 2028.

    The market is witnessing significant growth due to the increasing incidence of gynecological cancers. According to the World Health Organization, an estimated 389,000 new cases and 129,000 deaths occurred in 2020. This trend is expected to continue, driven by factors such as aging populations, rising awareness, and improved diagnostic methods. Another key driver in the market is the emergence of novel therapies. The development of targeted therapies, immunotherapies, and gene therapies is providing new treatment options for patients, leading to improved outcomes and increased survival rates. However, the high cost of these advanced therapies poses a significant challenge for both patients and healthcare systems.
    Affordability remains a critical concern, particularly in developing countries where access to healthcare is limited. In conclusion, the market is experiencing robust growth due to the rising incidence of gynecological cancers and the emergence of innovative therapies. However, the high cost of treatment remains a significant challenge that must be addressed to ensure accessibility and affordability for patients. Companies seeking to capitalize on market opportunities and navigate challenges effectively should focus on developing cost-effective treatment options while maintaining therapeutic efficacy.
    

    What will be the Size of the Gynecological Cancers Therapeutics Market during the forecast period?

    Request Free Sample

    The market is characterized by continuous evolution and dynamic market activities. genetic testing plays a pivotal role in identifying the genetic predisposition to various gynecological cancers, driving research funding towards precision medicine and personalized treatment plans. Patient support organizations are increasingly focusing on improving quality of life for patients undergoing cancer diagnosis and treatment. Cancer screening initiatives, including Molecular Diagnostics, are essential for early detection and prevention of gynecological cancers such as uterine, ovarian, cervical, vaginal, and vulvar cancers. Clinical trials and drug development are ongoing, with a focus on targeted therapy and hormonal treatments. Healthcare policy and regulatory frameworks are evolving to accommodate the needs of women's reproductive health, with a growing emphasis on patient care and patient advocacy.
    Machine learning and Data Analytics are transforming cancer diagnosis and treatment, enabling healthcare providers to deliver more accurate and effective care. Drug discovery and approval processes are underway for various gynecological cancers, with a focus on improving cancer survival rates and reducing recurrence. Digital health technologies, including telemedicine and remote monitoring, are enhancing patient care and access to healthcare services. The landscape of gynecological cancers therapeutics is ever-changing, with ongoing research and innovation in areas such as drug development, cancer prevention, and precision oncology. The future holds great promise for improving patient outcomes and advancing women's health.
    

    How is this Gynecological Cancers Therapeutics Industry segmented?

    The gynecological cancers therapeutics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    Type
    
      Uterine cancer
      Ovarian cancer
      Cervical cancer
      Others
    
    
    Modality
    
      Chemotherapy
      Targeted therapy
      Hormonal therapy
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        Germany
        UK
    
    
      APAC
    
        China
    
    
      Rest of World (ROW)
    

    By Type Insights

    The uterine cancer segment is estimated to witness significant growth during the forecast period.

    Uterine cancer, specifically endometrial cancer, arises from the inner lining of the uterus and is the fourth most common cancer among women in the US, with approximately 65,950 new cases expected to be diagnosed in 2022, according to the American Cancer Society. Genetic testing plays a crucial role in identifying the underlying causes and potential risk factors for uterine cancer. Research funding from various organizations and healthcare policy initiatives drives advancements in molecular diagnostics and clinical trials for early cancer detection and precision medicine. Patient support groups and advocacy organizations provide essential resources for patients, ensuring quality of life during cancer diagnosis and treatment.

    Drug development and approval processes prioritize targeted therapy and hormonal treatments for uterine cancer, while machine learning and artificial intelligence f

  20. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
John Elflein, Deaths by cancer in the U.S. 1950-2022 [Dataset]. https://www.statista.com/topics/1192/cancer-in-the-us/
Organization logo

Deaths by cancer in the U.S. 1950-2022

Explore at:
Dataset provided by
Statistahttp://statista.com/
Authors
John Elflein
Area covered
United States
Description

Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.

Search
Clear search
Close search
Google apps
Main menu