100+ datasets found
  1. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  2. Historic US Census - 1900

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US Census - 1900 [Dataset]. http://doi.org/10.57761/mez6-j880
    Explore at:
    avro, arrow, sas, stata, spss, csv, application/jsonl, parquetAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Feb 1, 1900 - Dec 31, 1900
    Area covered
    United States
    Description

    Documentation

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Historic data are scarce and often only exists in aggregate tables. The key advantage of the IPUMS data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the IPUMS data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The IPUMS 1900 census data was collected in June 1900. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Section 2

    This dataset was created on 2020-01-10 22:51:40.810 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1900 households: This dataset includes all households from the 1900 US census.

    IPUMS 1900 persons: This dataset includes all individuals from the 1910 US census.

    IPUMS 1900 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1900 datasets.

    Section 3

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Historic data are scarce and often only exists in aggregate tables. The key advantage of the IPUMS data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the IPUMS data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The IPUMS 1900 census data was collected in June 1900. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

  3. Historic US Census - 1870

    • redivis.com
    application/jsonl +7
    Updated Feb 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2019). Historic US Census - 1870 [Dataset]. http://doi.org/10.57761/jt8f-3n08
    Explore at:
    application/jsonl, sas, spss, arrow, csv, avro, parquet, stataAvailable download formats
    Dataset updated
    Feb 1, 2019
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Area covered
    United States
    Description

    Abstract

    This dataset includes all individuals from the 1870 US census.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.

    The official enumeration day of the 1870 census was 1 June 1870. The main goal of an early census like the 1870 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.

    Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT

  4. United States Census

    • kaggle.com
    zip
    Updated Apr 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2018). United States Census [Dataset]. https://www.kaggle.com/census/census-bureau-usa
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 17, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
    Source: https://en.wikipedia.org/wiki/United_States_Census

    Content

    The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.

    The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa

    https://cloud.google.com/bigquery/public-data/us-census

    Dataset Source: United States Census Bureau

    Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by Steve Richey from Unsplash.

    Inspiration

    What are the ten most populous zip codes in the US in the 2010 census?

    What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?

    https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png"> https://cloud.google.com/bigquery/images/census-population-map.png

  5. d

    ACS 5-Year Demographic Characteristics DC Census Tract

    • catalog.data.gov
    • opdatahub.dc.gov
    • +5more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC Census Tract [Dataset]. https://catalog.data.gov/dataset/acs-5-year-demographic-characteristics-dc-census-tract
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  6. P

    Replication Data for: The use of differential privacy for census data and...

    • paperswithcode.com
    Updated May 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Replication Data for: The use of differential privacy for census data and its impact on redistricting Dataset [Dataset]. https://paperswithcode.com/dataset/replication-data-for-the-use-of-differential
    Explore at:
    Dataset updated
    May 28, 2021
    Description

    Census statistics play a key role in public policy decisions and social science research. However, given the risk of revealing individual information, many statistical agencies are considering disclosure control methods based on differential privacy, which add noise to tabulated data. Unlike other applications of differential privacy, however, census statistics must be postprocessed after noise injection to be usable. We study the impact of the U.S. Census Bureau’s latest disclosure avoidance system (DAS) on a major application of census statistics, the redrawing of electoral districts. We find that the DAS systematically undercounts the population in mixed-race and mixed-partisan precincts, yielding unpredictable racial and partisan biases. While the DAS leads to a likely violation of the “One Person, One Vote” standard as currently interpreted, it does not prevent accurate predictions of an individual’s race and ethnicity. Our findings underscore the difficulty of balancing accuracy and respondent privacy in the Census.

  7. U.S. Census Blocks

    • giscommons-countyplanning.opendata.arcgis.com
    • geospatial.gis.cuyahogacounty.gov
    • +6more
    Updated Jun 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Blocks [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/fedmaps::u-s-census-blocks-1
    Explore at:
    Dataset updated
    Jun 29, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  8. census-bureau-usa

    • kaggle.com
    zip
    Updated May 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-usa [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-usa
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 18, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context :

    The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)

    Dataset source

    United States Census Bureau

    Sample Query

    SELECT zipcode, population FROM bigquery-public-data.census_bureau_usa.population_by_zip_2010 WHERE gender = '' ORDER BY population DESC LIMIT 10

    Terms of use

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data

  9. 1940 Census: Official 1940 Census Website

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Archives and Records Administration (2024). 1940 Census: Official 1940 Census Website [Dataset]. https://catalog.data.gov/dataset/1940-census-official-1940-census-website
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    NARA Digital Preservation Strategy (2022–2026)http://www.archives.gov/
    Description

    Website alows the public full access to the 1940 Census images, census maps and descriptions.

  10. Data from: US Census Data

    • console.cloud.google.com
    Updated Jun 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:United%20States%20Census%20Bureau&hl=ko&inv=1&invt=Ab18ow (2022). US Census Data [Dataset]. https://console.cloud.google.com/marketplace/product/united-states-census-bureau/us-census-data?hl=ko
    Explore at:
    Dataset updated
    Jun 11, 2022
    Dataset provided by
    Googlehttp://google.com/
    Area covered
    United States
    Description

    The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  11. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  12. D

    Decennial Census Data, 2020

    • catalog.dvrpc.org
    • staging-catalog.cloud.dvrpc.org
    csv
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DVRPC (2025). Decennial Census Data, 2020 [Dataset]. https://catalog.dvrpc.org/dataset/decennial-census-data-2020
    Explore at:
    csv(12201), csv(48864), csv(45639), csv(1628), csv(3138210), csv(20901), csv(1102597), csv(292974), csv(278080), csv(530289), csv, csv(9443624), csv(194128), csv(51283)Available download formats
    Dataset updated
    Mar 17, 2025
    Dataset authored and provided by
    DVRPC
    License

    https://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html

    Description

    This dataset contains data from the P.L. 94-171 2020 Census Redistricting Program. The 2020 Census Redistricting Data Program provides states the opportunity to delineate voting districts and to suggest census block boundaries for use in the 2020 Census redistricting data tabulations (Public Law 94-171 Redistricting Data File). In addition, the Redistricting Data Program will periodically collect state legislative and congressional district boundaries if they are changed by the states. The program is also responsible for the effective delivery of the 2020 Census P.L. 94-171 Redistricting Data statutorily required by one year from Census Day. The program ensures continued dialogue with the states in regard to 2020 Census planning, thereby allowing states ample time for their planning, response, and participation. The U.S. Census Bureau will deliver the Public Law 94-171 redistricting data to all states by Sept. 30, 2021. COVID-19-related delays and prioritizing the delivery of the apportionment results delayed the Census Bureau’s original plan to deliver the redistricting data to the states by April 1, 2021.

    Data in this dataset contains information on population, diversity, race, ethnicity, housing, household, vacancy rate for 2020 for various geographies (county, MCD, Philadelphia Planning Districts (referred to as county planning areas [CPAs] internally, Census designated places, tracts, block groups, and blocks)

    For more information on the 2020 Census, visit https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html

    PLEASE NOTE: 2020 Decennial Census data has had noise injected into it because of the Census's new Disclosure Avoidance System (DAS). This can mean that population counts and characteristics, especially when they are particularly small, may not exactly correspond to the data as collected. As such, caution should be exercised when examining areas with small counts. Ron Jarmin, acting director of the Census Bureau posted a discussion of the redistricting data, which outlines what to expect with the new DAS. For more details on accuracy you can read it here: https://www.census.gov/newsroom/blogs/director/2021/07/redistricting-data.html

  13. C

    United States Census Bureau

    • data.milwaukee.gov
    html
    Updated Jul 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    External Organizations (2019). United States Census Bureau [Dataset]. https://data.milwaukee.gov/dataset/united-states-census-bureau
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 9, 2019
    Dataset authored and provided by
    External Organizations
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Starting in July, data.census.gov will be the primary way to access Census Bureau data, including upcoming releases from the 2018 American Community Survey, 2017 Economic Census, 2020 Census and more. After July 1, 2019, all new data (previously released on American FactFinder) will be released on this new data platform. (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml)

  14. n

    United States Census

    • datacatalog.med.nyu.edu
    Updated Jul 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). United States Census [Dataset]. https://datacatalog.med.nyu.edu/dataset/10026
    Explore at:
    Dataset updated
    Jul 17, 2018
    Area covered
    United States
    Description

    The Decennial Census provides population estimates and demographic information on residents of the United States.

    The Census Summary Files contain detailed tables on responses to the decennial census. Data tables in Summary File 1 provide information on population and housing characteristics, including cross-tabulations of age, sex, households, families, relationship to householder, housing units, detailed race and Hispanic or Latino origin groups, and group quarters for the total population. Summary File 2 contains data tables on population and housing characteristics as reported by housing unit.

    Researchers at NYU Langone Health can find guidance for the use and analysis of Census Bureau data on the Population Health Data Hub (listed under "Other Resources"), which is accessible only through the intranet portal with a valid Kerberos ID (KID).

  15. W

    Census Planning Database - Tract - Hard to Count Shapefile

    • cloud.csiss.gmu.edu
    • data.amerigeoss.org
    csv, json, rdf, xml
    Updated Dec 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2018). Census Planning Database - Tract - Hard to Count Shapefile [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/census-planning-database-tract-hard-to-count-shapefile
    Explore at:
    csv, xml, json, rdfAvailable download formats
    Dataset updated
    Dec 31, 2018
    Dataset provided by
    United States
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    The Census Planning Database is produced by the U.S. Census Bureau. It assembles a range of housing, demographic, socioeconomic, and census operational data that can be used for survey and census planning.

    The Planning Database uses selected Census and selected 2012-2016 American Community Survey (ACS) estimates. In addition to variables extracted from the census and ACS databases, operational variables include the 2010 Census Mail Return Rate for each block group and tract.

    This dataset is a subset of the 2018 Census Planning Database, filtered for the state of Connecticut, and including variables relating to hard to count populations. This dataset also includes two variables from the Federal Communications Commission dataset "Residential Fixed Internet Access Service Connections per 1000 Households by Census Tract." More information about the FCC data can be found here: https://www.fcc.gov/reports-research/maps/residential-fixed-internet-access-service-connections-per-1000-households-by-census-tract-dec-2016/

    Other variables from the Census Planning Database relating to geography, population, households, housing units, and census operations at the tract and block level can also be found on the CT Data Portal with the tag "Census 2020."

  16. C

    ACS 5 Year Data by Community Area

    • data.cityofchicago.org
    • catalog.data.gov
    application/rdfxml +5
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). ACS 5 Year Data by Community Area [Dataset]. https://data.cityofchicago.org/Community-Economic-Development/ACS-5-Year-Data-by-Community-Area/t68z-cikk
    Explore at:
    tsv, json, csv, xml, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    Selected variables from the most recent ACS Community Survey (Released 2023) aggregated by Community Area. Additional years will be added as they become available.

    The underlying algorithm to create the dataset calculates the % of a census tract that falls within the boundaries of a given community area. Given that census tracts and community area boundaries are not aligned, these figures should be considered an estimate.

    Total population in this dataset: 2,647,621 Total Chicago Population Per ACS 2023: 2,664,452 % Difference: -0.632%

    There are different approaches in common use for displaying Hispanic or Latino population counts. In this dataset, following the approach taken by the Census Bureau, a person who identifies as Hispanic or Latino will also be counted in the race category with which they identify. However, again following the Census Bureau data, there is also a column for White Not Hispanic or Latino.

    Code can be found here: https://github.com/Chicago/5-Year-ACS-Survey-Data

    Community Area Shapefile:

    https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6

    Census Area Python Package Documentation:

    https://census-area.readthedocs.io/en/latest/index.html

  17. f

    [Dataset:] Data from Tree Censuses and Inventories in Panama

    • smithsonian.figshare.com
    zip
    Updated Apr 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard Condit; Rolando Pẽrez; Salomõn Aguilar; Suzanne Lao (2024). [Dataset:] Data from Tree Censuses and Inventories in Panama [Dataset]. http://doi.org/10.5479/data.stri.2016.0622
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Smithsonian Tropical Research Institute
    Authors
    Richard Condit; Rolando Pẽrez; Salomõn Aguilar; Suzanne Lao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract: These are results from a network of 65 tree census plots in Panama. At each, every individual stem in a rectangular area of specified size is given a unique number and identified to species, then stem diameter measured in one or more censuses. Data from these numerous plots and inventories were collected following the same methods as, and species identity harmonized with, the 50-ha long-term tree census at Barro Colorado Island. Precise location of every site, elevation, and estimated rainfall (for many sites) are also included. These data were gathered over many years, starting in 1994 and continuing to the present, by principal investigators R. Condit, R. Perez, S. Lao, and S. Aguilar. Funding has been provided by many organizations.Description:marenaRecent.full.Rdata5Jan2013.zip: A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format, designed for data analysis. This and all other tables labelled 'full' have one record per individual tree found in that census. Detailed documentations of the 'full' tables is given in RoutputFull.pdf (see component 10 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. These are the best data to use if only a single plot census is needed. marena2cns.full.Rdata5Jan2013.zip: R Analytical Tables of the style 'full' for 44 plots with two censuses: 'marena2cns.full1.rdata' for the first census and 'marena2cns.full2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.full (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed. marena3cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for nine plots with three censuses: 'marena3cns.full1.rdata' for the first census through 'marena2cns.full3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.full (component 2): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed. marena4cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for six plots with four censuses: 'marena4cns.full1.rdata' for the first census through 'marena4cns.full4.rdata' for the fourth census. These six plots are a subset of the nine found in marena3cns.full (component 3): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed. marenaRecent.stem.Rdata5Jan2013.zip. A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format. These are designed for data analysis. This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. The table has one record per individual stem, necessary because some individual trees have more than one stem. Detailed documentations of these tables is given in RoutputFull.pdf (see component 11 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). These are the best data to use if only a single plot census is needed, and individual stems are desired. marena2cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for 44 plots with two censuses: 'marena2cns.stem1.rdata' for the first census and 'marena3cns.stem2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.stem (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed, and individual stems are desired. marena3cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for nine plots with three censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.stem (component 6): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed, and individual stems are desired. marena4cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for six plots with four censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These six plots are a subset of the nine found in marena3cns.stem (component 7): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed, and individual stems are desired. bci.spptable.rdata. A list of the 1414 species found across all tree plots and inventories in Panama, in R format. The column 'sp' in this table is a code identifying the species in the full census tables (marena.full and marena.stem, components 1-4 and 5-8 above). RoutputFull.pdf: Detailed documentation of the 'full' tables in Rdata format (components 1-4 above). RoutputStem.pdf: Detailed documentation of the 'stem' tables in Rdata format (component 5-8 above). PanamaPlot.txt: Locations of all tree plots and inventories in Panama.

  18. d

    2019 Cartographic Boundary Shapefile, Current Census Tract for United...

    • catalog.data.gov
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). 2019 Cartographic Boundary Shapefile, Current Census Tract for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2019-cartographic-boundary-shapefile-current-census-tract-for-united-states-1-500000
    Explore at:
    Dataset updated
    Nov 12, 2020
    Area covered
    United States
    Description

    The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  19. a

    Census Tract Top 50 American Community Survey Data

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    Updated May 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). Census Tract Top 50 American Community Survey Data [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::census-tract-top-50-american-community-survey-data/about
    Explore at:
    Dataset updated
    May 19, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    Data from: American Community Survey, 5-year SeriesKing County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010 of over 50 attributes of the most requested data derived from the U.S. Census Bureau's demographic profiles (DP02-DP05). Also includes the most recent release annually with the vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): DP02, DP03, DP04, DP05Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. a

    2023 Census population change by age group and TALB

    • 2023census-statsnz.hub.arcgis.com
    • maps-by-statsnz.hub.arcgis.com
    Updated May 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics New Zealand (2024). 2023 Census population change by age group and TALB [Dataset]. https://2023census-statsnz.hub.arcgis.com/maps/056ab1fedf704d5cb36022af8ebb8032
    Explore at:
    Dataset updated
    May 29, 2024
    Dataset authored and provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The life-cycle age groups are:under 15 years15 to 29 years30 to 64 years65 years and over.Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.FootnotesGeographical boundariesStatistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.Subnational census usually resident populationThe census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. Caution using time seriesTime series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).About the 2023 Census datasetFor information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data qualityThe quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variableThe quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable. Age concept quality ratingAge is rated as very high quality. Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.Using data for goodStats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga".ConfidentialityThe 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
Organization logo

Census Data

Explore at:
Dataset updated
Mar 1, 2024
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

Search
Clear search
Close search
Google apps
Main menu