100+ datasets found
  1. Covid-19 Highest City Population Density

    • kaggle.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    Kaggle
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  2. World Population Dataset

    • kaggle.com
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Kumar Sahu (2022). World Population Dataset [Dataset]. https://www.kaggle.com/datasets/asahu40/world-population-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 2, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Amit Kumar Sahu
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.

    1. Continent Population Characteristics Analysis.
    2. Analysis of Countries.
      • Top 10 Most Populated and Least Populated Countries
      • Top 10 Largest and Smallest Countries as per Area
      • Population Growth From 1970 to 2020 (50 Years)
    3. Countries Represent % Of World Population.
      • Countries that represent below 0.1% of the World Population.
      • Countries that represent above 2% of the world Population
      • Top 10 Over Populated Countries based on Density Per Sq KM.
      • Top 10 Least Populated Countries based on Density Per Sq KM.
  3. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  4. Global patterns of current and future road infrastructure - Supplementary...

    • zenodo.org
    bin, zip
    Updated Apr 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meijer; Meijer; Huijbregts; Huijbregts; Schotten; Schipper; Schipper; Schotten (2022). Global patterns of current and future road infrastructure - Supplementary spatial data [Dataset]. http://doi.org/10.5281/zenodo.6420961
    Explore at:
    zip, binAvailable download formats
    Dataset updated
    Apr 7, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Meijer; Meijer; Huijbregts; Huijbregts; Schotten; Schipper; Schipper; Schotten
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global patterns of current and future road infrastructure - Supplementary spatial data

    Authors: Johan Meijer, Mark Huijbregts, Kees Schotten, Aafke Schipper

    Research paper summary: Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world's last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.

    Contents: The GRIP dataset consists of global and regional vector datasets in ESRI filegeodatabase and shapefile format, and global raster datasets of road density at a 5 arcminutes resolution (~8x8km). The GRIP dataset is mainly aimed at providing a roads dataset that is easily usable for scientific global environmental and biodiversity modelling projects. The dataset is not suitable for navigation. GRIP4 is based on many different sources (including OpenStreetMap) and to the best of our ability we have verified their public availability, as a criteria in our research. The UNSDI-Transportation datamodel was applied for harmonization of the individual source datasets. GRIP4 is provided under a Creative Commons License (CC-0) and is free to use. The GRIP database and future global road infrastructure scenario projections following the Shared Socioeconomic Pathways (SSPs) are described in the paper by Meijer et al (2018). Due to shapefile file size limitations the global file is only available in ESRI filegeodatabase format.

    Regional coding of the other vector datasets in shapefile and ESRI fgdb format:

    • Region 1: North America
    • Region 2: Central and South America
    • Region 3: Africa
    • Region 4: Europe
    • Region 5: Middle East and Central Asia
    • Region 6: South and East Asia
    • Region 7: Oceania

    Road density raster data:

    • Total density, all types combined
    • Type 1 density (highways)
    • Type 2 density (primary roads)
    • Type 3 density (secondary roads)
    • Type 4 density (tertiary roads)
    • Type 5 density (local roads)

    Keyword: global, data, roads, infrastructure, network, global roads inventory project (GRIP), SSP scenarios

  5. U

    United States US: Population Density: People per Square Km

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Population Density: People per Square Km data was reported at 35.608 Person/sq km in 2017. This records an increase from the previous number of 35.355 Person/sq km for 2016. United States US: Population Density: People per Square Km data is updated yearly, averaging 26.948 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 35.608 Person/sq km in 2017 and a record low of 20.056 Person/sq km in 1961. United States US: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  6. Population, surface area and density

    • kaggle.com
    Updated Nov 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira gibin (2024). Population, surface area and density [Dataset]. http://doi.org/10.34740/kaggle/dsv/9798006
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 3, 2024
    Dataset provided by
    Kaggle
    Authors
    willian oliveira gibin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graph was created in R:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F55a15c27e578216565ab65e502f9ecf8%2Fgraph1.png?generation=1730674251775717&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F0b481e4d397700978fe5cf15932dbc68%2Fgraph2.png?generation=1730674259213775&alt=media" alt="">

    driven primarily by high birth rates in developing countries and advancements in healthcare. According to the United Nations, the global population surpassed 8 billion in 2023, marking a critical milestone in human history. This growth, however, is unevenly distributed across continents and countries, leading to varied population densities and urban pressures.

    Surface area and population density play vital roles in shaping the demographic and economic landscape of each country. For instance, countries with large land masses such as Russia, Canada, and Australia have low population densities despite their significant populations, as vast portions of their land are sparsely populated or uninhabitable. Conversely, nations like Bangladesh and South Korea exhibit extremely high population densities due to smaller land areas combined with large populations.

    Population density, measured as the number of people per square kilometer, affects resource availability, environmental sustainability, and quality of life. High-density areas face greater challenges in housing, infrastructure, and environmental management, often experiencing increased pollution and resource strain. In contrast, low-density areas may struggle with underdeveloped infrastructure and limited access to services due to the dispersed population.

    Urbanization trends are another important aspect of these dynamics. As people migrate to cities seeking better economic opportunities, urban areas grow more densely populated, amplifying the need for efficient land use and sustainable urban planning. The UN reports that over half of the world’s population currently resides in urban areas, with this figure expected to rise to nearly 70% by 2050. This shift requires nations to balance population growth and density with sustainable development strategies to ensure a higher quality of life and environmental stewardship for future generations.

    Through an understanding of population size, surface area, and density, policymakers can better address challenges related to urban development, rural depopulation, and resource allocation, supporting a balanced approach to population management and economic development.

  7. G

    Greece GR: Population Density: People per Square Km

    • ceicdata.com
    Updated Dec 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Greece GR: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/greece/population-and-urbanization-statistics/gr-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Dec 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Greece
    Variables measured
    Population
    Description

    Greece GR: Population Density: People per Square Km data was reported at 83.479 Person/sq km in 2017. This records a decrease from the previous number of 83.599 Person/sq km for 2016. Greece GR: Population Density: People per Square Km data is updated yearly, averaging 78.274 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 86.279 Person/sq km in 2010 and a record low of 65.152 Person/sq km in 1961. Greece GR: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Greece – Table GR.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  8. World Population by Countries (2025)

    • kaggle.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    Kaggle
    Authors
    Samith Chimminiyan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Description

    This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

    Attribute Information

    • Rank : Country Rank by Population.
    • Country : Name of the Country.
    • Population(2024) : Current Population of each Country.
    • Yearly Change : Percentage Yearly Change in Population.
    • Net Change : Net change in the Population.
    • Density (P/Km²) : Population density (population per square km)
    • Land Area(Km²) : Total land area of the Country.
    • Migrants (net) : Total number of migrants.
    • Fertility Rate : Fertility rate
    • Median Age : Median age of the population
    • Urban Pop % : Percentage of urban population
    • World Share : Share to the word with population.

    Acknowledgements

    https://www.worldometers.info/world-population/population-by-country/

    Image by Gerd Altmann from Pixabay

  9. N

    Netherlands NL: Population Density: People per Square Km

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Netherlands NL: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/netherlands/population-and-urbanization-statistics/nl-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Netherlands
    Variables measured
    Population
    Description

    Netherlands NL: Population Density: People per Square Km data was reported at 508.544 Person/sq km in 2017. This records an increase from the previous number of 505.501 Person/sq km for 2016. Netherlands NL: Population Density: People per Square Km data is updated yearly, averaging 439.837 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 508.544 Person/sq km in 2017 and a record low of 344.749 Person/sq km in 1961. Netherlands NL: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Netherlands – Table NL.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  10. g

    Statistics Bureau, Population; Population Change; Area and Population...

    • geocommons.com
    Updated Jun 24, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Burkey (2008). Statistics Bureau, Population; Population Change; Area and Population Density, Japan, 2000-2005 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jun 24, 2008
    Dataset provided by
    Burkey
    Statistics Bureau, Ministry of Internal Affairs and Communications
    Description

    This dataset displays data from the 2005 Census of Japan. It displays population, population change, area, and population density of the 47 prefectures in Japan. This data comes from Japan's Ministry of Internal Affairs and Communication's Statistics Bureau

  11. o

    Accessibility to Cities 2015

    • data.opendatascience.eu
    Updated May 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Accessibility to Cities 2015 [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=Travel%20time
    Explore at:
    Dataset updated
    May 12, 2021
    Description

    This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometer or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between the University of Oxford Malaria Atlas Project (MAP), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands. The underlying datasets used to produce the map, include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a “friction surface”, a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest city (by travel time). Cities were determined using the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modeled shortest time from that location to a city. Full Citation D.J. Weiss, A. Nelson, H.S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T.C.D. Lucas, R.E. Howes, L.S. Tusting, S.Y. Kang, E. Cameron, D. Bisanzio, K.E. Battle, S. Bhatt, and P.W. Gething. A global map of travel time to cities to assess inequalities in accessibility in 2015. (2018). Nature. doi:10.1038/nature25181.

  12. a

    World Population Density Estimate 2016

    • hub.arcgis.com
    Updated Apr 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). World Population Density Estimate 2016 [Dataset]. https://hub.arcgis.com/datasets/541be35d25ae4847b7a5e129a7eb246f
    Explore at:
    Dataset updated
    Apr 5, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Area covered
    World,
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us at http://goto.arcgisonline.com/landscape7/World_Population_Density_Estimate_2016.This layer is a global estimate of human population density for 2016. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.

  13. f

    Major Cities

    • data.apps.fao.org
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Major Cities [Dataset]. https://data.apps.fao.org/map/catalog/srv/search?keyword=Place
    Explore at:
    Dataset updated
    Mar 4, 2025
    Description

    The "Major Cities" layer is derived from the "World Cities" dataset provided by ArcGIS Data and Maps group as part of the global data layers made available for public use. "Major cities" layer specifically contains National and Provincial capitals that have the highest population within their respective country. Cities were filtered based on the STATUS (“National capital”, “National and provincial capital”, “Provincial capital”, “National capital and provincial capital enclave”, and “Other”). Majority of these cities within larger countries have been filtered at the highest levels of POP_CLASS (“5,000,000 and greater” and “1,000,000 to 4,999,999”). However, China for example, was filtered with cities over 11 million people due to many highly populated cities. Population approximations are sourced from US Census and UN Data. Credits: ESRI, CIA World Factbook, GMI, NIMA, UN Data, UN Habitat, US Census Bureau Disclaimer: The designations employed and the presentation of material at this site do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

  14. A 1km population dataset of South Asia from 640 to 2020

    • tpdc.ac.cn
    zip
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shicheng LI; Yanqiao HUANG (2025). A 1km population dataset of South Asia from 640 to 2020 [Dataset]. http://doi.org/10.11888/HumanNat.tpdc.302031
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Tanzania Petroleum Development Corporationhttp://tpdc.co.tz/
    Authors
    Shicheng LI; Yanqiao HUANG
    Area covered
    Description

    South Asia is one of the most densely populated regions in the world. This dataset comprehensively collects historical materials related to the population of South Asia and previous research results (see data description documents and references for details), carefully examines and estimates the population of South Asia (now India, Pakistan, Nepal, Bangladesh) from 640 to 1801 AD, and connects it with the population census data of British India from 1871 to 1941 (Nepal's data comes from Nepal's census data) and the United Nations World Population Prospects data from 1950 to 2020, obtaining the population of South Asia for a total of 22 periods (640, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1595, 1750, 1801, 1871, 1901, 1921, 1941, 1960, 1980, 2000, 2010, 2020) from 640 to 2020. Next, based on geographic detectors, select the dominant environmental factors that affect the spatial distribution of population, collect historical data on the distribution of residential areas (see data description document and references for details), and use a random forest regression model to spatialize the population size. On the basis of excluding uninhabited areas such as water bodies, glaciers, and bare/unused land, and determining the maximum historical population distribution range, a 1km resolution population dataset for South Asia from 640 to 2020 was developed. The leave one method was used to test the model, and the variance explained was 0.81, indicating good model accuracy. Compared with the existing HYDE historical population dataset, this study incorporates more historical materials and the latest research results in estimating the historical population; In using random forest regression for historical population spatial simulation, this study considers the changes in South Asian settlements over the past millennium, while the HYDE dataset only considers natural elements and considers them stable and unchanged. Therefore, this dataset is more reliable than the HYDE dataset and can more reasonably reveal the spatiotemporal characteristics of population changes in South Asia during historical periods. It is the basic data for the long-term evolution of human land relations, climate change attribution, and ecological protection research in South Asia.

  15. V

    Venezuela VE: Population Density: People per Square Km

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Venezuela VE: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/venezuela/population-and-urbanization-statistics/ve-population-density-people-per-square-km
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Venezuela
    Variables measured
    Population
    Description

    Venezuela VE: Population Density: People per Square Km data was reported at 36.253 Person/sq km in 2017. This records an increase from the previous number of 35.790 Person/sq km for 2016. Venezuela VE: Population Density: People per Square Km data is updated yearly, averaging 21.981 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 36.253 Person/sq km in 2017 and a record low of 9.593 Person/sq km in 1961. Venezuela VE: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Venezuela – Table VE.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  16. Coastal dataset including exposure and vulnerability layers, Deliverable 3.1...

    • zenodo.org
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    E. Ieronymidi; D. Grigoriadis; E. Ieronymidi; D. Grigoriadis (2023). Coastal dataset including exposure and vulnerability layers, Deliverable 3.1 - ECFAS Project (GA 101004211), www.ecfas.eu [Dataset]. http://doi.org/10.5281/zenodo.6469339
    Explore at:
    Dataset updated
    Jun 28, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    E. Ieronymidi; D. Grigoriadis; E. Ieronymidi; D. Grigoriadis
    Description

    The European Copernicus Coastal Flood Awareness System (ECFAS) project will contribute to the evolution of the Copernicus Emergency Monitoring Service by demonstrating the technical and operational feasibility of a European Coastal Flood Awareness System. Specifically, ECFAS will provide a much-needed solution to bolster coastal resilience to climate risk and reduce population and infrastructure exposure by monitoring and supporting disaster preparedness, two factors that are fundamental to damage prevention and recovery if a storm hits.

    The ECFAS Proof-of-Concept development will run from January 2021-December 2022. The ECFAS project is a collaboration between Istituto Universitario di Studi Superiori IUSS di Pavia (Italy, ECFAS Coordinator), Mercator Ocean International (France), Planetek Hellas (Greece), Collecte Localisation Satellites (France), Consorzio Futuro in Ricerca (Italy), Universitat Politecnica de Valencia (Spain), University of the Aegean (Greece), and EurOcean (Portugal), and is funded by the European Commission H2020 Framework Programme within the call LC-SPACE-18-EO-2020 - Copernicus evolution: research activities in support of the evolution of the Copernicus services.

    This project has received funding from the European Union’s Horizon 2020 programme

    The deliverables will have restricted access at least until the end of ECFAS

    Description of the containing files inside the Dataset.

    The dataset was divided at European country level, except the Adriatic area which was extracted as a region and not on a country level due to the small size of the countries. The buffer zone of each data was 10km inland in order to be correlated with the new Copernicus product Coastal Zone LU/LC.

    Specifically, the dataset includes the new Coastal LU/LC product which was implemented by the EEA and became available at the end of 2020. Additional information collected in relation to the location and characteristics of transport (road and railway) and utility networks (power plants), population density and time variability. Furthermore, some of the publicly available datasets that were used in CEMS related to the abovementioned assets were gathered such as OpenStreetMap (building footprints, road and railway network infrastructures), GeoNames (populated places but also names of administrative units, rivers and lakes, forests, hills and mountains, parks and recreational areas, etc.), the Global Human Settlement Layer (GHS) and Global Human Settlement Population Grid (GHS-POP) generated by JRC. Also, the dataset contains 2 layers with statistics information regarding the population of Europe per sex and age divided in administrative units at NUTS level 3. The first layers includes information fro the whole Europe and the second layer has only the information regaridng the population at the Coastal area. Finally, the dataset includes the global database of Floods protection standars. Below there are tables which present the dataset.

    * Adriatic folder contains the countries: Slovenia, Croatia, Montenegro, Albania, Bosnia and Herzegovina

    * Malta was added to the dataset

    Copernicus Land Monitoring Service

    Resolution

    Comment

    Coastal LU/LC

    1:10.000

    A Copernicus hotspot product to monitor landscape dynamics in coastal zones

    EU-Hydro - Coastline

    1:30.000

    EU-Hydro is a dataset for all European countries providing the coastline

    Natura 20001: 100000A Copernicus hotspot product to monitor important areas for nature conservation

    European Settlement Map

    10m

    A spatial raster dataset that is mapping human settlements in Europe

    Imperviousness Density

    10m

    The percentage of sealed area

    Impervious Built-up

    10m

    The part of the sealed surfaces where buildings can be found

    Grassland 2018

    10m

    A binary grassland/non-grassland product

    Tree Cover Density 2018

    10m

    Level of tree cover density in a range from 0-100%

    Joint Research Center

    Resolution

    Comment

    Global Human Settlement Population Grid
    GHS-POP)

    250m

    Residential population estimates for target year 2015

    GHS settlement model layer
    (GHS-SMOD)

    1km

    The GHS Settlement Model grid delineates and classify settlement typologies via a logic of population size, population and built-up area densities

    GHS-BUILT

    10m

    Built-up grid derived from Sentinel-2 global image composite for reference year 2018

    ENACT 2011 Population Grid

    (ENACT-POP R2020A)

    1km

    The ENACT is a population density for the European Union that take into account major daily and monthly population variations

    JRC Open Power Plants Database (JRC-PPDB-OPEN)

    -

    Europe’s open power plant database

    GHS functional urban areas
    (GHS-FUA R2019A)

    1km

    City and its commuting zone (area of influence of the city in terms of labour market flows)

    GHS Urban Centre Database
    (GHS-UCDB R2019A)

    1km

    Urban Centres defined by specific cut-off values on resident population and built-up surface

    Additional Data

    Resolution

    Comment

    Open Street Map (OSM)

    -

    BF, Transportation Network, Utilities Network, Places of Interest

    CEMS

    -

    Data from Rapid Mapping activations in Europe

    GeoNames

    -

    Populated places, Adm. units, Hydrography, Forests, Hills/Mountains, Parks, etc.

    Global Administrative Areas-Administrative areas of all countries, at all levels of sub-division
    NUTS3 Population Age/Sex Group-Eurostat population by age ansd sex statistics interesected with the NUTS3 Units
    FLOPROS A global database of FLOod PROtection Standards, which comprises information in the form of the flood return period associated with protection measures, at different spatial scales

    Disclaimer:

    ECFAS partners provide the data "as is" and "as available" without warranty of any kind. The ECFAS partners shall not be held liable resulting from the use of the information and data provided.

    This project has received funding from the Horizon 2020 research and innovation programme under grant agreement No. 101004211

  17. S

    Sweden SE: Population Density: People per Square Km

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Sweden SE: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/sweden/population-and-urbanization-statistics/se-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Sweden
    Variables measured
    Population
    Description

    Sweden SE: Population Density: People per Square Km data was reported at 24.718 Person/sq km in 2017. This records an increase from the previous number of 24.362 Person/sq km for 2016. Sweden SE: Population Density: People per Square Km data is updated yearly, averaging 20.697 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 24.718 Person/sq km in 2017 and a record low of 18.326 Person/sq km in 1961. Sweden SE: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  18. g

    Census, Demographic Data For Manhattan, New York City

    • geocommons.com
    Updated Jun 4, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census (2008). Census, Demographic Data For Manhattan, New York City [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jun 4, 2008
    Dataset provided by
    data
    Census
    Description

    This dataset provides highly detailed (Block Level) views of various demographics for Manhattan, New York city. this dataset includes information on age, race, sex, income, housing, and various other attributes. This data comes from the 2000 Us Census and was joined to the Census Tiger line files to create the output. enjoy!

  19. a

    World Population Estimate

    • hub.arcgis.com
    Updated Oct 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Civic Analytics Network (2016). World Population Estimate [Dataset]. https://hub.arcgis.com/maps/b8366845754345e3a794f2a28f81b9d6
    Explore at:
    Dataset updated
    Oct 20, 2016
    Dataset authored and provided by
    Civic Analytics Network
    Area covered
    Description

    The geographic distribution of human population is key to understanding the effects of humans on the natural world and how natural events such as storms, earthquakes, and other natural phenomenon affect humans. Dataset SummaryThis layer was created with a model that combines imagery, road intersection density, populated places, and urban foot prints to create a likelihood surface. The likelihood surface is then used to create a raster of population with a cell size of 0.00221 degrees (approximately 250 meters).The population raster is created usingDasymetriccartographic methods to allocate the population values in over 1.6 million census polygons covering the world.The population of each polygon was normalized to the 2013 United Nations population estimates by country.Each cell in this layer has an integer value depicting the number of people that are likely to reside in that cell. Tabulations based on these values should result in population totals that more accurately reflect the population of areas of several square kilometers.This layer has global coverage and was published by Esri in 2014.More information about this layer is available:Building the Most Detailed Population Map in the World

  20. Y

    Yemen YE: Population Density: People per Square Km

    • ceicdata.com
    Updated Aug 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). Yemen YE: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/yemen/population-and-urbanization-statistics/ye-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Aug 16, 2019
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Yemen
    Variables measured
    Population
    Description

    Yemen YE: Population Density: People per Square Km data was reported at 53.508 Person/sq km in 2017. This records an increase from the previous number of 52.246 Person/sq km for 2016. Yemen YE: Population Density: People per Square Km data is updated yearly, averaging 21.826 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 53.508 Person/sq km in 2017 and a record low of 9.964 Person/sq km in 1961. Yemen YE: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Yemen – Table YE.World Bank: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted Average;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
Organization logo

Covid-19 Highest City Population Density

Curated covid-19 highest city population density dataset

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 25, 2020
Dataset provided by
Kaggle
Authors
lookfwd
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

Content

There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

Acknowledgements

Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

Inspiration

Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

Search
Clear search
Close search
Google apps
Main menu