84 datasets found
  1. N

    Median Household Income by Racial Categories in State Center, IA (, in 2023...

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Median Household Income by Racial Categories in State Center, IA (, in 2023 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/insights/state-center-ia-median-household-income-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, State Center
    Variables measured
    Median Household Income for Asian Population, Median Household Income for Black Population, Median Household Income for White Population, Median Household Income for Some other race Population, Median Household Income for Two or more races Population, Median Household Income for American Indian and Alaska Native Population, Median Household Income for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household income across different racial categories in State Center. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.

    Key observations

    Based on our analysis of the distribution of State Center population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 90.70% of the total residents in State Center. Notably, the median household income for White households is $72,500. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $72,500.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in State Center.
    • Median household income: Median household income, adjusting for inflation, presented in 2023-inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for State Center median household income by race. You can refer the same here

  2. u

    An experienced racial-ethnic diversity dataset in the United States using...

    • knowledge.uchicago.edu
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xu, Wenfei; Wang, Zhuojun; Attia, Nada; Attia, Youssef; Zhang, Yucheng; Zong, Haotian (2023). An experienced racial-ethnic diversity dataset in the United States using human mobility data [Dataset]. http://doi.org/10.17605/OSF.IO/X94GJ
    Explore at:
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    OSF
    Authors
    Xu, Wenfei; Wang, Zhuojun; Attia, Nada; Attia, Youssef; Zhang, Yucheng; Zong, Haotian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This national, tract-level experienced racial segregation dataset uses data for over 66 million anonymized and opted-in devices in Cuebiq’s Spectus Clean Room data to estimate 15 minute time overlaps of device stays in 38.2m x 19.1m grids across the United States in 2022. We infer a probability distribution of racial backgrounds for each device given their home Census block groups at the time of data collection, and calculate the probability of a diverse social contact during that space and time. These measures are then aggregated to the Census tract and across the whole time period in order to preserve privacy and develop a generalizable measure of the diversity of a place. We propose that this dataset is a better measurement of the segregation and diversity as it is experienced, which we show diverges from standard measurements of segregation. The data can be used by researchers to better understand the determinants of experienced segregation; beyond research, we suggest this data can be used by policy makers to understand the impacts of policies designed to encourage social mixing and access to opportunities such as affordable housing and mixed-income housing, and more.

    For the purposes of enhanced privacy, home census block groups were pre-calculated by the data provider, and all calculations are done at the Census tract, with tracts that have more than 20 unique devices over the period of analysis.

  3. d

    2020 - 2021 Diversity Report

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2020 - 2021 Diversity Report [Dataset]. https://catalog.data.gov/dataset/2020-2021-diversity-report
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students

  4. d

    Replication Data for: Ethnic Diversity, Segregation, and Ethnocentric Trust...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robinson, Amanda (2023). Replication Data for: Ethnic Diversity, Segregation, and Ethnocentric Trust in Africa [Dataset]. http://doi.org/10.7910/DVN/XWTQYE
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Robinson, Amanda
    Description

    Ethnic diversity is generally associated with less social capital and lower levels of trust. However, most empirical evidence for this relationship is focused on generalized trust, rather than more theoretically appropriate measures of group-based trust. This paper evaluates the relationship between ethnic diversity – at national, regional, and local levels – and the degree to which coethnics are trusted more than non-coethnics, a value I call the “coethnic trust premium.” Using public opinion data from sixteen African countries, I find that citizens of ethnically diverse states express, on average, more ethnocentric trust. However, within countries, regional ethnic diversity is actually associated with less ethnocentric trust. This same negative pattern between diversity and ethnocentric trust appears across districts and enumeration areas within Malawi. I then show, consistent with these patterns, that diversity is only detrimental to intergroup trust at the national level in the presence of ethnic group segregation. These results highlight the importance of the spatial distribution of ethnic groups on intergroup relations, and question the utility of micro-level studies of interethnic interactions for understanding macro-level group dynamics.

  5. Top Languages Spoken in the United States

    • kaggle.com
    Updated Oct 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Top Languages Spoken in the United States [Dataset]. https://www.kaggle.com/datasets/thedevastator/top-languages-spoken-in-the-united-states/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 22, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Area covered
    United States
    Description

    Top Languages Spoken in the United States

    The Impact of linguistics on Community and Business in America

    About this dataset

    Languages are an important part of daily life in the USA. Here is a table that shows the most common languages spoken in the USA, as well as a big spreadsheet which shows each CBSA (Core-Based Statistical Area, or urban area).

    Language usage varies widely throughout the United States. According to the latest census data, over 350 different languages are represented in homes across the country. The following table and spreadsheet provide more detailed information on language usage throughout the various states and cities in the US:

    Columns: - index: Index column for dataframe - Table with column headers in row 5 and row headers in column A: Contains language data for each CBSA (Core Based Statistical Area) - Unnamed: 1: Rank of CBSA by total number of speakers of all languages - Unnamed: 2: Name of CBSA - Unnamed: 3: Population of CBSA - Unnamed: 4: Percent of population that speaks English very well - Unnamed: 5 through Unnamed: 58 : Languages spoken by at least 0.1% of the population, with corresponding percentages

    How to use the dataset

    1. This dataset can be used to understand the linguistic diversity of the United States, and to compare languages spoken across different states and cities.
    2. This data can also be used to explore trends in language usage over time.
    3. businesses can use this dataset to identify which languages are most commonly spoken in the areas in which they operate and tailor their marketing or customer service accordingly.
    4. Schools could use this dataset to plan language-learning programs based on the needs of their community.
    5. Policymakers could use this data to better understand linguistic diversity in the United States and design programs to support bilingualism or multilingualism

    Research Ideas

    1. Businesses can use this dataset to identify which languages are most commonly spoken in the areas in which they operate and cater their marketing or customer service accordingly.
    2. Schools could use this data to plan language-learning programs based on the needs of their community.
    3. Policymakers could use this dataset to better understand linguistic diversity in the United States and design programs to support bilingualism or multilingualism

    Acknowledgements

    This dataset was created by Gary Hoover. The data was sourced from https://www.kaggle.com/garyhoov/us-languages

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: Languages Spoken at Home by Urban Area = CBSA.csv

    File: US Languages Spoken at Home 2014.csv | Column name | Description | |:-------------------------------------------------------------------|:--------------| | Table with column headers in row 5 and row headers in column A | |

  6. Z

    Model Zoo: A Dataset of Diverse Populations of Neural Network Models - SVHN

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giró-i-Nieto, Xavier (2022). Model Zoo: A Dataset of Diverse Populations of Neural Network Models - SVHN [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6632120
    Explore at:
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Schürholt, Konstantin
    Giró-i-Nieto, Xavier
    Knyazev, Boris
    Taskiran, Diyar
    Borth, Damian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

    Dataset

    This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from SVHN. All zoos with extensive information and code can be found at www.modelzoos.cc.

    This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "svhn_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.

    For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

  7. Natural Diversity Database

    • data.ct.gov
    • deepmaps.ct.gov
    • +6more
    application/rdfxml +5
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy and Environmental Protection (2025). Natural Diversity Database [Dataset]. https://data.ct.gov/Environment-and-Natural-Resources/Natural-Diversity-Database/ya37-68s7
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    Connecticut Department of Energy and Environmental Protectionhttps://www.ct.gov/deep
    Authors
    Department of Energy and Environmental Protection
    Description

    Abstract: The Natural Diversity Database Areas is a 1:24,000-scale, polygon feature-based layer that represents general locations of endangered, threatened and special concern species. The layer is based on information collected by DEEP biologists, cooperating scientists, conservation groups and landowners. In some cases an occurrence represents a location derived from literature, museum records and specimens. These data are compiled and maintained by the DEEP Bureau of Natural Resources, Natural Diversity Database Program. The layer is updated every six months and reflects information that has been submitted and accepted up to that point. The layer includes state and federally listed species. It does not include Critical Habitats, Natural Area Preserves, designated wetland areas or wildlife concentration areas. These general locations were created by randomly shifting the true locations of terrestrial species and then adding a 0.25 mile buffer distance to each point, and by mapping linear segments with a 300 foot buffer associated with aquatic, riparian and coastal species. The exact location of the species observation falls somewhere within the polygon area and not necessarily in the center. Attribute information includes the date when these data were last updated. Species names are withheld to protect sensitive species from collection and disturbance. Data is compiled at 1:24,000 scale. These data are updated every six months, approximately in June and December. It is important to use the most current data available.

    Purpose: This dataset was developed to help state agencies and landowners comply with the State Endangered Species Act. Under the Act, state agencies are required to ensure that any activity authorized, funded or performed by the state does not threatened the continued existence of endangered or threatened species or their essential habitat. Applicants for certain state and local permits may be required to consult with the Department of Energy and Environmental Protections's Natural Diversity Data Base (NDDB) as part of the permit process. Follow instructions provided in the appropriate permit guidance. If you require a federal endangered species review, work with your federal regulatory agency and review the US Fish & Wildlife IPaC tool. Natural Diversity Data Base Areas are intended to be used as a pre-screening tool to identify potential impacts to known locations of state listed species. To use this data for site-based endangered species review, locate the project boundaries and any additionally affected areas on the map. If any part of the project is within a NDDB Area then the project may have a conflict with listed species. In the case of a potential conflict, an Environmental Review Request (https://portal.ct.gov/deep-nddbrequest) should be made to the Natural Diversity Data Base for further review. The DEEP will provide recommendations for avoiding impacts to state listed species. Additional onsite surveys may be requested of the applicant depending on the nature and scope of a project. For this reason, applicants should apply early in the planning stages of a project. Not all land use choices will impact the particular species that is present. Often minor modifications to the proposed plan can alleviate conflicts with state listed species.Other uses of the data include targeting areas for conservation or site management to enhance and protect rare species habitats.Supplemental information:

    For additional information, refer to the Department of Energy and Environmental Protection Endangered Species web page at https://portal.ct.gov/DEEP/Endangered-Species/Connecticuts-Endangered-Threatened-and-Special-Concern-Species
  8. N

    Median Household Income by Racial Categories in United States (2022)

    • neilsberg.com
    csv, json
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income by Racial Categories in United States (2022) [Dataset]. https://www.neilsberg.com/research/datasets/3693eb82-8904-11ee-9302-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Median Household Income for Asian Population, Median Household Income for Black Population, Median Household Income for White Population, Median Household Income for Some other race Population, Median Household Income for Two or more races Population, Median Household Income for American Indian and Alaska Native Population, Median Household Income for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household income across different racial categories in United States. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.

    Key observations

    Based on our analysis of the distribution of United States population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 68.17% of the total residents in United States. Notably, the median household income for White households is $79,933. Interestingly, despite the White population being the most populous, it is worth noting that Asian households actually reports the highest median household income, with a median income of $106,954. This reveals that, while Whites may be the most numerous in United States, Asian households experience greater economic prosperity in terms of median household income.

    https://i.neilsberg.com/ch/united-states-median-household-income-by-race.jpeg" alt="United States median household income diversity across racial categories">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in United States.
    • Median household income: Median household income, adjusting for inflation, presented in 2022-inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States median household income by race. You can refer the same here

  9. U

    Protected Areas Database of the United States (PAD-US) 2.1

    • data.usgs.gov
    • catalog.data.gov
    Updated Sep 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS) Gap Analysis Project (GAP) (2020). Protected Areas Database of the United States (PAD-US) 2.1 [Dataset]. http://doi.org/10.5066/P92QM3NT
    Explore at:
    Dataset updated
    Sep 3, 2022
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey (USGS) Gap Analysis Project (GAP)
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2005 - 2020
    Area covered
    United States
    Description

    NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 3.0 https://doi.org/10.5066/P9Q9LQ4B. The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme (https://communities.geoplatform.gov/ngda-cadastre/). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property h ...

  10. USA Name Data

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data.gov (2019). USA Name Data [Dataset]. https://www.kaggle.com/datasets/datagov/usa-names
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    Data.govhttps://data.gov/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    Cultural diversity in the U.S. has led to great variations in names and naming traditions and names have been used to express creativity, personality, cultural identity, and values. Source: https://en.wikipedia.org/wiki/Naming_in_the_United_States

    Content

    This public dataset was created by the Social Security Administration and contains all names from Social Security card applications for births that occurred in the United States after 1879. Note that many people born before 1937 never applied for a Social Security card, so their names are not included in this data. For others who did apply, records may not show the place of birth, and again their names are not included in the data.

    All data are from a 100% sample of records on Social Security card applications as of the end of February 2015. To safeguard privacy, the Social Security Administration restricts names to those with at least 5 occurrences.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:usa_names

    https://cloud.google.com/bigquery/public-data/usa-names

    Dataset Source: Data.gov. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @dcp from Unplash.

    Inspiration

    What are the most common names?

    What are the most common female names?

    Are there more female or male names?

    Female names by a wide margin?

  11. c

    DS2713_20191015 GIS Dataset

    • map.dfg.ca.gov
    Updated Oct 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). DS2713_20191015 GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds2713.html
    Explore at:
    Dataset updated
    Oct 23, 2019
    Description

    CDFW BIOS GIS Dataset, Contact: Melanie Gogol-Prokurat, Description: Rare species richness is a measure of the diversity of rare species in the landscape, and is one measurement used to describe the distribution of overall species biodiversity in California for the California Department of Fish and Wildlife's (CDFW) Areas of Conservation Emphasis Project (ACE). The rare species richness summary depicts relative rare species diversity within each ecoregion across the state, so that areas of highest diversity within each ecoregion are highlighted.

  12. N

    State Center, IA median household income breakdown by race betwen 2013 and...

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). State Center, IA median household income breakdown by race betwen 2013 and 2023 [Dataset]. https://www.neilsberg.com/insights/state-center-ia-median-household-income-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, State Center
    Variables measured
    Median Household Income Trends for Asian Population, Median Household Income Trends for Black Population, Median Household Income Trends for White Population, Median Household Income Trends for Some other race Population, Median Household Income Trends for Two or more races Population, Median Household Income Trends for American Indian and Alaska Native Population, Median Household Income Trends for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data from 2013 to 2023. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in State Center. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..

    Key observations

    • White: In State Center, the median household income for the households where the householder is White decreased by $4,103(5.36%), between 2013 and 2023. The median household income, in 2023 inflation-adjusted dollars, was $76,603 in 2013 and $72,500 in 2023.
    • Black or African American: As per the U.S. Census Bureau population data, in State Center, there are no households where the householder is Black or African American; hence, the median household income for the Black or African American population is not applicable.
    • Refer to the research insights for more key observations on American Indian and Alaska Native, Asian, Native Hawaiian and Other Pacific Islander, Some other race and Two or more races (multiracial) households
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in State Center.
    • 2010: 2010 median household income
    • 2011: 2011 median household income
    • 2012: 2012 median household income
    • 2013: 2013 median household income
    • 2014: 2014 median household income
    • 2015: 2015 median household income
    • 2016: 2016 median household income
    • 2017: 2017 median household income
    • 2018: 2018 median household income
    • 2019: 2019 median household income
    • 2020: 2020 median household income
    • 2021: 2021 median household income
    • 2022: 2022 median household income
    • 2023: 2023 median household income
    • Please note: All incomes have been adjusted for inflation and are presented in 2023-inflation-adjusted dollars.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for State Center median household income by race. You can refer the same here

  13. Z

    Model Zoo: A Dataset of Diverse Populations of Resnet-18 Models - CIFAR-100

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knyazev, Boris (2022). Model Zoo: A Dataset of Diverse Populations of Resnet-18 Models - CIFAR-100 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6977381
    Explore at:
    Dataset updated
    Aug 28, 2022
    Dataset provided by
    Schürholt, Konstantin
    Giró-i-Nieto, Xavier
    Knyazev, Boris
    Taskiran, Diyar
    Borth, Damian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 27 model zoos with varying hyperparameter combinations are generated and includes 50’360 unique neural network models resulting in over 2’585’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

    Dataset

    This dataset is part of a larger collection of model zoos and contains the zoo of 1000 ResNet18 models trained on CIFAR100. All zoos with extensive information and code can be found at www.modelzoos.cc.

    The complete zoo is 2.6TB large. Due to the size, this repository contains the checkpoints of the last epoch 60. For a link to the full dataset as well as more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

  14. RRING Global Survey Research Dataset (WP3)

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Jun 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lars Lorenz; Lars Lorenz; Eric Jensen; Eric Jensen (2021). RRING Global Survey Research Dataset (WP3) [Dataset]. http://doi.org/10.5281/zenodo.4719938
    Explore at:
    Dataset updated
    Jun 25, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lars Lorenz; Lars Lorenz; Eric Jensen; Eric Jensen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The RRING Work Package 3 (WP3) objective was to clarify how Research Funding Organisations (RFOs) and Research Performing Organisations (RPOs) operated within region-specific research and innovation environments. It explored how they navigated the governance and regulatory frameworks for Responsible Research and Innovation (RRI), as well as offering their perspectives on the entities responsible for RRI-related policy and action in their locales.

    This data set covers the global survey research part, which was designed to contextualise how RPOs and RFOs interacted within the research environment and with non-academic stakeholders. Countries were grouped according to the UNESCO regions of the world and key results per region are listed below. For a detailed analysis and further findings of the work completed under WP3 of the RRING project, please refer to the full deliverable document "State of the Art of RRI in the Five UNESCO World Regions" [link to be inserted].

    European and North American States

    • ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (92%), followed by diverse perspectives (88%), and gender equality (79%). Including ethnic minorities was the area which garnered the least attitudinal support (71%). Respondents took the most practical steps towards engaging with diverse perspectives (63%), and the least towards inclusion of ethnic minorities (24%).
    • ‘Anticipative and reflective’: Respondents widely agreed (82%) with the importance of ensuring R&I work does not cause concerns for society, but only 37% confirmed they had taken practical steps to ensure this.
    • ‘Open and transparent’: Vast majorities of respondents agreed on the importance of keeping R&I methods open and transparent (94%), with 65% also confirming they take practical steps to do this. An equally high number agreed on the importance of making the results of R&I work accessible to as wide a public as possible (94%), and 68% confirmed this through their reported actions. This indicated the smallest value-action gap of all RRI measures for respondents from European and North American countries. Attitudinal agreement on the importance of making data freely available to the public was lower (83%), as was the practical action aspect for this measure (45%).
    • ‘Responsive and adaptive to change’: Most respondents agreed (89%) that it was important to ensure their work addresses societal needs, and 62% confirmed that they take practical steps towards this aim.

    Latin American and Caribbean States

    • ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of gender equality in R&I (86%), followed by ensuring ethical principles are applied (85%), and diverse perspectives incorporated (83%). Including ethnic minorities was the area which garnered the least attitudinal support (77%). Respondents took the most practical steps towards ensuring ethical principles guide their work (50%), and the least towards including ethnic minorities (25%), but the smallest value action gap was found for gender equality.
    • ‘Anticipative and reflective’: Respondents agreed (79%) that it is important to ensure R&I work does not cause concerns for society, but only 29% confirmed they had taken practical steps to ensure this.
    • ‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 45% indicating they had taken practical action. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (88%), and 44% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was slightly lower (81%), as was the practical action aspect for this measure (35%).
    • ‘Responsive and adaptive to change’: Most respondents agreed (84%) that it was important to ensure their work addresses societal needs, and 49% confirmed that they take practical steps towards this aim.

    Asian and Pacific States

    • ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (90%), followed by diverse perspectives (89%), and gender equality (86%). Including ethnic minorities was the area which garnered the least attitudinal support (76%). Respondents took the most practical steps towards engaging with diverse perspectives (65%), and the least towards including ethnic minorities (30%).
    • ‘Anticipative and reflective’: Respondents widely agreed (78%) with the importance of ensuring R&I work does not cause concerns for society, and 42% confirmed they had taken practical steps to ensure this.
    • ‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (91%), with 58% indicating they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (89%), and 64% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was lower (79%), as was the practical action aspect for this measure (40%).
    • ‘Responsive and adaptive to change’: Most respondents agreed (92%) that it was important to ensure their work addresses societal needs, and 69% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from the Asian and Pacific region.

    Arab States

    • ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (93%), followed by diverse perspectives (81%), and gender equality (85%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards engaging with diverse perspectives (66%), which equated to one of two equally small value-action gaps for respondents from Arab states, and the least practical steps towards inclusion of ethnic minorities (22%).
    • ‘Anticipative and reflective’: A high proportion of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society. However, only 38% confirmed they had taken practical steps to ensure this.
    • ‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 59% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (90%), and 66% backed this up with practical action. Ensuring public accessibility of research results was the second of two measures with equally small value-action gaps. Attitudinal agreement on the importance of making data freely available to the public was much lower (78%), which also reflected the practical action aspect for this measure (49%).
    • ‘Responsive and adaptive to change’: Most respondents agreed (96%) that it was important to ensure their work addresses societal needs, and 68% confirmed that they take practical steps to achieve this.

    African States

    • ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring engagement with diverse perspectives and expertise in R&I (91%), followed by ensuring ethical principles are applied (90%), and gender equality (89%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards ensuring ethical principles guide their work (57%), and the least towards including ethnic minorities (32%).
    • ‘Anticipative and reflective’: The majority of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society, with 59% confirming that they take practical steps to ensure this.
    • ‘Open and transparent’: A high proportion of respondents agreed on the importance of keeping R&I methods open and transparent (90%), with 54% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (86%), and 56% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was significantly lower (73%), as was the practical action aspect for this measure (38%).
    • ‘Responsive and adaptive to change’: Respondents mostly agreed (92%) that it was important to ensure their work addresses societal needs, and 64% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from African states.

    Note: Please refer to the "RRING WP3 - Survey Data Documentation" document for detailed instructions on how to use this dataset.

  15. Z

    Data from: MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gonzales, Carmelo (2024). MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8381475
    Explore at:
    Dataset updated
    Mar 4, 2024
    Dataset provided by
    Gonzales, Carmelo
    Lee, Kin Long Kelvin
    Miret, Santiago
    Spelling, Matthew
    Galkin, Mikhail
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We propose MatSci ML, a novel benchmark for modeling MATerials SCIence using Machine Learning methods focused on solid-state materials with periodic crystal structures. Applying machine learning methods to solid-state materials is a nascent field with substantial fragmentation largely driven by the great variety of datasets used to develop machine learning models. This fragmentation makes comparing the performance and generalizability of different methods difficult, thereby hindering overall research progress in the field. Building on top of open-source datasets, including large-scale datasets like the OpenCatalyst Project, OQMD, NOMAD, the Carolina Materials Database, and Materials Project, the MatSci ML benchmark provides a diverse set of materials systems and properties data for model training and evaluation, including simulated energies, atomic forces, material bandgaps, as well as classification data for crystal symmetries via space groups. The diversity of properties in MatSci ML makes the implementation and evaluation of multi-task learning algorithms for solid-state materials possible, while the diversity of datasets facilitates the development of new, more generalized algorithms and methods across multiple datasets. In the multi-dataset learning setting, MatSci ML enables researchers to combine observations from multiple datasets to perform joint prediction of common properties, such as energy and forces. Using MatSci ML, we evaluate the performance of different graph neural networks and equivariant point cloud networks on several benchmark tasks spanning single task, multitask, and multi-data learning scenarios. Our open-source code is available at https://github.com/IntelLabs/matsciml.

  16. FedScope Diversity Cubes

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jan 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Office of Personnel Management (2024). FedScope Diversity Cubes [Dataset]. https://catalog.data.gov/dataset/fedscope-diversity-cubes-714ca
    Explore at:
    Dataset updated
    Jan 26, 2024
    Dataset provided by
    United States Office of Personnel Managementhttps://opm.gov/
    Description

    This set of quarterly cubes provides employee population data for the new Ethnicity and Race Indicator (ERI). The numbers reflect the actual number of employees as of a specific point in time. The following workforce characteristics are available for analysis: Agency, State/Country, Age (5 year interval), Education Level, Ethnicity and Race Indicator (ERI), Length of Service (5 year interval), GS & Equivalent Grade, Occupation, Occupation Category, Pay Plan & Grade, Salary Level ($10,000 interval), STEM Occupations, Supervisory Status, Type of Appointment, Work Schedule, Work Status, Employment, Average Salary, Average Length of Service. Diversity cubes will be available for the most recent 8 quarters and the 5 previous end of fiscal year (September) files.

  17. o

    US Cities: Demographics

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, json
    Updated Jul 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

  18. W

    State of Utah Acquired LiDAR Data - Wasatch Front

    • wifire-data.sdsc.edu
    • otportal.sdsc.edu
    • +4more
    laz
    Updated Aug 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2024). State of Utah Acquired LiDAR Data - Wasatch Front [Dataset]. https://wifire-data.sdsc.edu/dataset/state-of-utah-acquired-lidar-data-wasatch-front1
    Explore at:
    lazAvailable download formats
    Dataset updated
    Aug 16, 2024
    Dataset provided by
    OpenTopography
    Area covered
    Utah, Wasatch Front, Wasatch Range
    Description

    The State of Utah, including the Utah Automated Geographic Reference Center, Utah Geological Survey, and the Utah Division of Emergency Management, along with local and federal partners, including Salt Lake County and local cities, the Federal Emergency Management Agency, the U.S. Geological Survey, and the U.S. Environmental Protection Agency, have funded and collected over 8380 km2 (3236 mi2) of high-resolution (0.5 or 1 meter) Lidar data across the state since 2011, in support of a diverse set of flood mapping, geologic, transportation, infrastructure, solar energy, and vegetation projects. The datasets include point cloud, first return digital surface model (DSM), and bare-earth digital terrain/elevation model (DEM) data, along with appropriate metadata (XML, project tile indexes, and area completion reports). This 0.5-meter 2013-2014 Wasatch Front dataset includes most of the Salt Lake and Utah Valleys (Utah), and the Wasatch (Utah and Idaho), and West Valley fault zones (Utah). Other recently acquired State of Utah data include the 2011 Utah Geological Survey Lidar dataset covering Cedar and Parowan Valleys, the east shore/wetlands of Great Salt Lake, the Hurricane fault zone, the west half of Ogden Valley, North Ogden, and part of the Wasatch Plateau in Utah.

  19. Data from: UAIC Ichthyological Collection

    • gbif.org
    Updated Oct 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Worth Pugh; Worth Pugh (2021). UAIC Ichthyological Collection [Dataset]. http://doi.org/10.15468/a2laag
    Explore at:
    Dataset updated
    Oct 25, 2021
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    University of Alabama Biodiversity and Systematics
    Authors
    Worth Pugh; Worth Pugh
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The State of Alabama contains the most diverse fish fauna of North America. The University of Alabama Ichthyological Collection (UAIC) documents this diversity and is one of the largest educational and research collections of fishes in the southeastern United States. This nationally and internationally recognized biological resource includes over one million preserved, skeletal, and frozen specimens, some dating back to the mid 1900's, and is the best single resource documenting past and present distributions and abundances of fishes in the State.

  20. f

    Data from: Diversity, Equity, and Inclusion in the United States Emergency...

    • tandf.figshare.com
    docx
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jordan S. Rudman; Andra Farcas; Gilberto A. Salazar; JJ Hoff; Remle P. Crowe; Kimberly Whitten-Chung; Gilberto Torres; Carolina Pereira; Eric Hill; Shazil Jafri; David I. Page; Megan von Isenburg; Ameera Haamid; Anjni P. Joiner (2023). Diversity, Equity, and Inclusion in the United States Emergency Medical Services Workforce: A Scoping Review [Dataset]. http://doi.org/10.6084/m9.figshare.21388899.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Dec 19, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Jordan S. Rudman; Andra Farcas; Gilberto A. Salazar; JJ Hoff; Remle P. Crowe; Kimberly Whitten-Chung; Gilberto Torres; Carolina Pereira; Eric Hill; Shazil Jafri; David I. Page; Megan von Isenburg; Ameera Haamid; Anjni P. Joiner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Emergency medical services (EMS) workforce demographics in the United States do not reflect the diversity of the population served. Despite some efforts by professional organizations to create a more representative workforce, little has changed in the last decade. This scoping review aims to summarize existing literature on the demographic composition, recruitment, retention, and workplace experience of underrepresented groups within EMS. Peer-reviewed studies were obtained from a search of PubMed, CINAHL, Web of Science, ProQuest Thesis and Dissertations, and non-peer-reviewed (“gray”) literature from 1960 to present. Abstracts and included full-text articles were screened by two independent reviewers trained on inclusion/exclusion criteria. Studies were included if they pertained to the demographics, training, hiring, retention, promotion, compensation, or workplace experience of underrepresented groups in United States EMS by race, ethnicity, sexual orientation, or gender. Studies of non-EMS fire department activities were excluded. Disputes were resolved by two authors. A single reviewer screened the gray literature. Data extraction was performed using a standardized electronic form. Results were summarized qualitatively. We identified 87 relevant full-text articles from the peer-reviewed literature and 250 items of gray literature. Primary themes emerging from peer-reviewed literature included workplace experience (n = 48), demographics (n = 12), workforce entry and exit (n = 8), education and testing (n = 7), compensation and benefits (n = 5), and leadership, mentorship, and promotion (n = 4). Most articles focused on sex/gender comparisons (65/87, 75%), followed by race/ethnicity comparisons (42/87, 48%). Few articles examined sexual orientation (3/87, 3%). One study focused on telecommunicators and three included EMS physicians. Most studies (n = 60, 69%) were published in the last decade. In the gray literature, media articles (216/250, 86%) demonstrated significant industry discourse surrounding these primary themes. Existing EMS workforce research demonstrates continued underrepresentation of women and nonwhite personnel. Additionally, these studies raise concerns for pervasive negative workplace experiences including sexual harassment and factors that negatively affect recruitment and retention, including bias in candidate testing, a gender pay gap, and unequal promotion opportunities. Additional research is needed to elucidate recruitment and retention program efficacy, the demographic composition of EMS leadership, and the prevalence of racial harassment and discrimination in this workforce.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). Median Household Income by Racial Categories in State Center, IA (, in 2023 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/insights/state-center-ia-median-household-income-by-race/

Median Household Income by Racial Categories in State Center, IA (, in 2023 inflation-adjusted dollars)

Explore at:
json, csvAvailable download formats
Dataset updated
Mar 1, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Iowa, State Center
Variables measured
Median Household Income for Asian Population, Median Household Income for Black Population, Median Household Income for White Population, Median Household Income for Some other race Population, Median Household Income for Two or more races Population, Median Household Income for American Indian and Alaska Native Population, Median Household Income for Native Hawaiian and Other Pacific Islander Population
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents the median household income across different racial categories in State Center. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.

Key observations

Based on our analysis of the distribution of State Center population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 90.70% of the total residents in State Center. Notably, the median household income for White households is $72,500. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $72,500.

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

Racial categories include:

  • White
  • Black or African American
  • American Indian and Alaska Native
  • Asian
  • Native Hawaiian and Other Pacific Islander
  • Some other race
  • Two or more races (multiracial)

Variables / Data Columns

  • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in State Center.
  • Median household income: Median household income, adjusting for inflation, presented in 2023-inflation-adjusted dollars

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for State Center median household income by race. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu