63 datasets found
  1. c

    Educational Attainment

    • data.ccrpc.org
    csv
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Educational Attainment [Dataset]. https://data.ccrpc.org/dataset/educational-attainment
    Explore at:
    csv(1753)Available download formats
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    Overall educational attainment measures the highest level of education attained by a given individual: for example, an individual counted in the percentage of the measured population with a master’s or professional degree can be assumed to also have a bachelor’s degree and a high school diploma, but they are not counted in the population percentages for those two categories. Overall educational attainment is the broadest education indicator available, providing information about the measured county population as a whole.

    Only members of the population aged 25 and older are included in these educational attainment estimates, sourced from the U.S. Census Bureau American Community Survey (ACS).

    Champaign County has high educational attainment: over 48 percent of the county's population aged 25 or older has a bachelor's degree or graduate or professional degree as their highest level of education. In comparison, the percentage of the population aged 25 or older in the United States and Illinois with a bachelor's degree in 2023 was 21.8% (+/-0.1) and 22.8% (+/-0.2), respectively. The population aged 25 or older in the U.S. and Illinois with a graduate or professional degree in 2022, respectively, was 14.3% (+/-0.1) and 15.5% (+/-0.2).

    Educational attainment data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Educational Attainment for the Population 25 Years and Over.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (29 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (6 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018). U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  2. Educational Attainment of Washington Population by Age, Race/Ethnicity/, and...

    • data.wa.gov
    • s.cnmilf.com
    • +2more
    application/rdfxml +5
    Updated May 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington Student Achievement Council (2019). Educational Attainment of Washington Population by Age, Race/Ethnicity/, and PUMA Region [Dataset]. https://data.wa.gov/Education/Educational-Attainment-of-Washington-Population-by/aqa5-4cee
    Explore at:
    application/rdfxml, csv, application/rssxml, json, tsv, xmlAvailable download formats
    Dataset updated
    May 16, 2019
    Dataset authored and provided by
    Washington Student Achievement Council
    Area covered
    Washington
    Description

    The American Community Survey (ACS) is designed to estimate the characteristic distribution of populations* and estimated counts should only be used to calculate percentages. They do not represent the actual population counts or totals. Beginning in 2019, the Washington Student Achievement Council (WSAC) has measured educational attainment for the Roadmap Progress Report using one-year American Community Survey (ACS) data from the United States Census Bureau. These public microdata represents the most current data, but it is limited to areas with larger populations leading to some multi-county regions**.

    *The American Community Survey is not the official source of population counts. It is designed to show the characteristics of the nation's population and should not be used as actual population counts or housing totals for the nation, states or counties. The official population count — including population by age, sex, race and Hispanic origin — comes from the once-a-decade census, supplemented by annual population estimates (which do not typically contain educational attainment variables) from the following groups and surveys:
    -- Washington State Office of Financial Management (OFM): https://www.ofm.wa.gov/washington-data-research/population-demographics -- US Census Decennial Census: https://www.census.gov/programs-surveys/decennial-census.html and Population Estimates Program: https://www.census.gov/programs-surveys/popest.html

    **In prior years, WSAC used both the five-year and three-year (now discontinued) data. While the 5-year estimates provide a larger sample, they are not recommended for year to year trends and also are released later than the one-year files.

    Detailed information about the ACS at https://www.census.gov/programs-surveys/acs/guidance.html

  3. Educational attainment in the U.S. 1960-2022

    • statista.com
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Educational attainment in the U.S. 1960-2022 [Dataset]. https://www.statista.com/statistics/184260/educational-attainment-in-the-us/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.

  4. A

    ‘International Educational Attainment by Year & Age’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘International Educational Attainment by Year & Age’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-international-educational-attainment-by-year-age-2640/45836103/?iid=007-039&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘International Educational Attainment by Year & Age’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/international-comp-attainmente on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    The National Center for Education Statistics (NCES) is the primary federal entity for collecting and analyzing data related to education in the U.S. and other nations. NCES is located within the U.S. Department of Education and the Institute of Education Sciences. NCES fulfills a Congressional mandate to collect, collate, analyze, and report complete statistics on the condition of American education; conduct and publish reports; and review and report on education activities internationally.

    • Table 603.10. Percentage of the population 25 to 64 years old who completed high school, by age group and country: Selected years, 2001 through 2012
    • Table 603.20. Percentage of the population 25 to 64 years old who attained selected levels of postsecondary education, by age group and country: 2001 and 2012
    • Table 603.30. Percentage of the population 25 to 64 years old who attained a bachelor's or higher degree, by age group and country: Selected years, 1999 through 2012
    • Table 603.40 Percentage of the population 25 to 64 years old who attained a postsecondary vocational degree, by age group and country: Selected years, 1999 through 2012
    • Table 603.50 Number of bachelor's degree recipients per 100 persons at the typical minimum age of graduation, by sex and country: Selected years, 2005 through 2012
    • Table 603.60. Percentage of postsecondary degrees awarded to women, by field of study and country: 2013
    • Table 603.70. Percentage of bachelor's or equivalent degrees awarded in mathematics, science, and engineering, by field of study and country: 2013
    • Table 603.80. Percentage of master's or equivalent degrees and of doctoral or equivalent degrees awarded in mathematics, science, and engineering, by field of study and country: 2013
    • Table 603.90. Employment to population ratios of -25 to 64-year-olds, by sex, highest level of educational attainment, and country: 2014

    Source: https://nces.ed.gov/programs/digest/current_tables.asp

    This dataset was created by National Center for Education Statistics and contains around 100 samples along with Unnamed: 20, Unnamed: 24, technical information and other features such as: - Unnamed: 11 - Unnamed: 16 - and more.

    How to use this dataset

    • Analyze Unnamed: 15 in relation to Unnamed: 6
    • Study the influence of Unnamed: 1 on Unnamed: 10
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit National Center for Education Statistics

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  5. US Highschool students dataset

    • kaggle.com
    zip
    Updated Apr 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    peter mushemi (2024). US Highschool students dataset [Dataset]. https://www.kaggle.com/datasets/petermushemi/us-highschool-students-dataset
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 14, 2024
    Authors
    peter mushemi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:

    Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.

    This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.

  6. Public School Characteristics - Current

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). Public School Characteristics - Current [Dataset]. https://catalog.data.gov/dataset/public-school-characteristics-current-340b1
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The National Center for Education Statistics' (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated point locations (latitude and longitude) for public elementary and secondary schools included in the NCES Common Core of Data (CCD). The CCD program annually collects administrative and fiscal data about all public schools, school districts, and state education agencies in the United States. The data are supplied by state education agency officials and include basic directory and contact information for schools and school districts, as well as characteristics about student demographics, number of teachers, school grade span, and various other administrative conditions. CCD school and agency point locations are derived from reported information about the physical location of schools and agency administrative offices. The point locations and administrative attributes in this data layer represent the most current CCD collection. For more information about NCES school point data, see: https://nces.ed.gov/programs/edge/Geographic/SchoolLocations. For more information about these CCD attributes, as well as additional attributes not included, see: https://nces.ed.gov/ccd/files.asp.Notes:-1 or MIndicates that the data are missing.-2 or NIndicates that the data are not applicable.-9Indicates that the data do not meet NCES data quality standards.Collections are available for the following years:2022-232021-222020-212019-202018-192017-18All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data. Collections are available for the following years:

  7. U.S. median household income 2023, by education of householder

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by education of householder [Dataset]. https://www.statista.com/statistics/233301/median-household-income-in-the-united-states-by-education/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.

  8. School District Characteristics - Current

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). School District Characteristics - Current [Dataset]. https://catalog.data.gov/dataset/school-district-characteristics-current-4aa03
    Explore at:
    Dataset updated
    May 23, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are special-purpose governments and administrative units designed by state and local officials to provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to develop demographic estimates and to support educational research and program administration. The NCES Common Core of Data (CCD) program is an annual collection of basic administrative characteristics for all public schools, school districts, and state education agencies in the United States. These characteristics are reported by state education officials and include directory information, number of students, number of teachers, grade span, and other conditions. The administrative attributes in this layer were developed from the most current CCD collection available. For more information about NCES school district boundaries, see: https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries. For more information about CCD school district attributes, see: https://nces.ed.gov/ccd/files.asp.Notes:-1 or MIndicates that the data are missing.-2 or NIndicates that the data are not applicable.-9Indicates that the data do not meet NCES data quality standards.Collections are available for the following years:2021-222020-212019-202018-192017-18All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  9. u

    Education by Tracts 2015

    • gstore.unm.edu
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Education by Tracts 2015 [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/ae64a495-a852-4ae2-9ca8-8dc59f8a4d0e/metadata/ISO-19115:2003.html
    Explore at:
    Dataset updated
    Mar 6, 2020
    Time period covered
    2015
    Area covered
    West Bound -109.050173 East Bound -103.001964 North Bound 37.000293 South Bound 31.332172
    Description

    A broad and generalized selection of 2011-2015 US Census Bureau 2015 5-year American Community Survey education data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of educational attaiment by grade level and sex (for all persons 25 years and older), plus enrollment estimates at key educational levels (for the universe of all persons 3+ years old). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  10. O

    School Attendance by Student Group and District, 2022-2023

    • data.ct.gov
    • s.cnmilf.com
    • +1more
    application/rdfxml +5
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Department of Education (2023). School Attendance by Student Group and District, 2022-2023 [Dataset]. https://data.ct.gov/Education/School-Attendance-by-Student-Group-and-District-20/he4h-bgqh
    Explore at:
    json, csv, tsv, application/rssxml, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset authored and provided by
    State Department of Education
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2022-2023 school year.

    Student groups include:

    Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races)

    Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch.

    When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.

  11. A

    ‘Postsecondary Completion Rates’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Postsecondary Completion Rates’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-postsecondary-completion-rates-cf72/0b6d8195/?iid=007-354&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Postsecondary Completion Rates’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/postsecondary-completion-ratese on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    The National Center for Education Statistics (NCES) is the primary federal entity for collecting and analyzing data related to education in the U.S. and other nations. NCES is located within the U.S. Department of Education and the Institute of Education Sciences. NCES fulfills a Congressional mandate to collect, collate, analyze, and report complete statistics on the condition of American education; conduct and publish reports; and review and report on education activities internationally.

    • Table 326.10. Graduation rate from first institution attended for first-time, full-time bachelor's degree-seeking students at 4-year postsecondary institutions, by race/ethnicity, time to completion, sex, control of institution, and acceptance rate: Selected cohort entry years, 1996 through 2008
    • Table 326.20. Graduation rate from first institution attended within 150 percent of normal time for first-time, full-time degree/certificate-seeking students at 2-year postsecondary institutions, by race/ethnicity, sex, and control of institution: Selected cohort entry years, 2000 through 2011
    • Table 326.30. Retention of first-time degree-seeking undergraduates at degree-granting postsecondary institutions, by attendance status, level and control of institution, and percentage of applications accepted: Selected years, 2006 to 2014
    • Table 326.40. Percentage distribution of first-time postsecondary students starting at -2 and 4-year institutions during the 2003-04 academic year, by highest degree attained, enrollment status, and selected characteristics: Spring 2009

    Source: https://nces.ed.gov/programs/digest/current_tables.asp

    This dataset was created by National Center for Education Statistics and contains around 100 samples along with Unnamed: 27, Unnamed: 11, technical information and other features such as: - Unnamed: 21 - Unnamed: 5 - and more.

    How to use this dataset

    • Analyze Unnamed: 4 in relation to Unnamed: 34
    • Study the influence of Unnamed: 6 on Unnamed: 29
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit National Center for Education Statistics

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  12. USA Unemployment & Education Level

    • kaggle.com
    Updated Sep 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Val Bauman (2021). USA Unemployment & Education Level [Dataset]. https://www.kaggle.com/valbauman/student-engagement-online-learning-supplement/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2021
    Dataset provided by
    Kaggle
    Authors
    Val Bauman
    Area covered
    United States
    Description

    Context & Content

    This dataset consists of the unemployment rate and education level of adults in the USA by county. That is, for each county in the USA, this dataset provides the count and percentage of unemployed adults as well as the count and percentage of adults of various educational backgrounds. Each county was been assigned one of four locale categories (City, Suburb, Town, Rural) according to its 2013 Urban Influence Code and their descriptions provided in UIC_codes.csv. From the descriptions of each of the codes and the descriptions of the locales "City", "Suburb", "Town", and "Rural" provided on page 2 of the locale user manual (locale_user_manual.pdf), each county was assigned one of four locales.

    The unemployment rate data includes the count and percentage of unemployed adults for each county in the USA for each year from 2000-2020. The median household income for 2019 is also included. The education level data includes the count and percentage of adults with less than a high school diploma, a high school diploma only, some college, and a bachelor's degree/four years of college or more for the years 1970, 1980, 1990, 2000, and 2019. The Urban Influence Code data includes the UIC and locale description of each county in the USA and the locale user manual has been included as a PDF as strictly a reference file, to understand how each county was assigned a locale within the unemployment.csv and education.csv files.

    Data Sources

    Source for the unemployment rate and education level data by county: "County-level Data Sets." USDA Economic Research Service, US Department of Agriculture. Access date: Sept 8, 2021. URL: https://www.ers.usda.gov/data-products/county-level-data-sets/

    Source for Urban Influence Codes by county: "Urban Influence Codes." USDA Economic Research Service, US Department of Agriculture. Access date: Sept 8, 2021. URL: https://www.ers.usda.gov/data-products/urban-influence-codes/#:~:text=The%202013%20Urban%20Influence%20Codes,to%20metro%20and%20micropolitan%20areas.&text=An%20update%20of%20the%20Urban,is%20planned%20for%20mid%2D2023.

    Inspiration

    This dataset was created to be used as an additional data source for the LearnPlatform COVID-19 Impact on Digital Learning Kaggle competition, but is suitable for other analyses related to unemployment rate and education level in the USA.

  13. ACS-ED 2013-2017 Total Population: Economic Characteristics (DP03)

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2013-2017 Total Population: Economic Characteristics (DP03) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2013-2017-total-population-economic-characteristics-dp03-827cd
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  14. N

    2019-20 Demographic Data In NYC Public Schools Suppressed - Pre-K, K-8 &...

    • data.cityofnewyork.us
    • catalog.data.gov
    application/rdfxml +5
    Updated Feb 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Education (DOE) (2021). 2019-20 Demographic Data In NYC Public Schools Suppressed - Pre-K, K-8 & 9-12 Grades [Dataset]. https://data.cityofnewyork.us/Education/2019-20-Demographic-Data-In-NYC-Public-Schools-Sup/4n6u-rqyh
    Explore at:
    application/rdfxml, csv, tsv, xml, application/rssxml, jsonAvailable download formats
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    Department of Education (DOE)
    Description

    Enrollment counts are based on the October 31 Audited Register for 2019 for Pre-K data which includes students in 3-K, K-8 and 9-12 grades. 2019-20 is the first year this report includes side-by-side comparisons of the racial and ethnic demographics of schools and special programs with the racial and ethnic demographics of all students in their respective attendance zones and districts. As such, the 2019-20 report does not include information on whether schools and special programs are becoming more or less similar to their zones and districts. English Language Arts and Math state assessment results for students in grades 3 through 8 are not available for inclusion in this report, as the spring 2020 exams did not take place.

  15. a

    US Department of Education College Scorecard 2015-2016

    • livingatlas-dcdev.opendata.arcgis.com
    Updated Aug 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). US Department of Education College Scorecard 2015-2016 [Dataset]. https://livingatlas-dcdev.opendata.arcgis.com/datasets/Story::us-department-of-education-college-scorecard-2015-2016/api
    Explore at:
    Dataset updated
    Aug 8, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Area covered
    Description

    This dataset consists of a selection of variables extracted from the U.S. Department of Education's College Scorecard 2015/2016. For the original, raw data visit the College Scorecard webpage. This dataset includes variables about institution types, proportion of degree types awarded, student enrollments and demographics, and a number of price and revenue variables. For 2005-2006 data, see here.Note: Data is not uniformly available for all schools on all variables. Variables for which there is no data (NULL), or where data is suppressed for reasons of privacy, are indicated by 999999999.

    ATTRIBUTE DESCRIPTION EXAMPLE

    ID2 1

    UNITIDUnit ID for institution 100654

    OPEID 8-digit OPE ID for institution 100200

    OPEID6 6-digit OPE ID for institution 1002

    State FIPS

    1

    State

    AL

    Zip

    35762

    City

    Normal

    Institution Name

    Alabama A & M University

    Institution Type 1 Public 2 Private nonprofit 3 Private for-profit 1

    Institution Level 1 4-year 2 2-year 3 Less-than-2-year 1

    In Operation 1 true 0 false 1

    Main Campus 1 true 0 false 1

    Branches Count of the number of branches 1

    Popular Degree 1 Predominantly certificate-degree granting 2 Predominantly associate's-degree granting 3 Predominantly bachelor's-degree granting 4 Entirely graduate-degree granting 3

    Highest Degree 0 Non-degree-granting 1 Certificate degree 2 Associate degree 3 Bachelor's degree 4 Graduate degree 4

    PCIP01 Percentage of degrees awarded in Agriculture, Agriculture Operations, And Related Sciences. 0.0446

    PCIP03 Percentage of degrees awarded in Natural Resources And Conservation. 0.0023

    PCIP04 Percentage of degrees awarded in Architecture And Related Services. 0.0094

    PCIP05 Percentage of degrees awarded in Area, Ethnic, Cultural, Gender, And Group Studies. 0

    PCIP09 Percentage of degrees awarded in Communication, Journalism, And Related Programs. 0

    PCIP10 Percentage of degrees awarded in Communications Technologies/Technicians And Support Services. 0.0164

    PCIP11 Percentage of degrees awarded in Computer And Information Sciences And Support Services. 0.0634

    PCIP12 Percentage of degrees awarded in Personal And Culinary Services. 0

    PCIP13 Percentage of degrees awarded in Education. 0.1268

    PCIP14 Percentage of degrees awarded in Engineering. 0.1432

    PCIP15 Percentage of degrees awarded in Engineering Technologies And Engineering-Related Fields. 0.0587

    PCIP16 Percentage of degrees awarded in Foreign Languages, Literatures, And Linguistics. 0

    PCIP19 Percentage of degrees awarded in Family And Consumer Sciences/Human Sciences. 0.0188

    PCIP22 Percentage of degrees awarded in Legal Professions And Studies. 0

    PCIP23 Percentage of degrees awarded in English Language And Literature/Letters. 0.0235

    PCIP24 Percentage of degrees awarded in Liberal Arts And Sciences, General Studies And Humanities. 0.0423

    PCIP25 Percentage of degrees awarded in Library Science. 0

    PCIP26 Percentage of degrees awarded in Biological And Biomedical Sciences. 0.1009

    PCIP27 Percentage of degrees awarded in Mathematics And Statistics. 0.0094

    PCIP29 Percentage of degrees awarded in Military Technologies And Applied Sciences. 0

    PCIP30 Percentage of degrees awarded in Multi/Interdisciplinary Studies. 0

    PCIP31 Percentage of degrees awarded in Parks, Recreation, Leisure, And Fitness Studies. 0

    PCIP38 Percentage of degrees awarded in Philosophy And Religious Studies. 0

    PCIP39 Percentage of degrees awarded in Theology And Religious Vocations. 0

    PCIP40 Percentage of degrees awarded in Physical Sciences. 0.0188

    PCIP41 Percentage of degrees awarded in Science Technologies/Technicians. 0

    PCIP42 Percentage of degrees awarded in Psychology. 0.0282

    PCIP43 Percentage of degrees awarded in Homeland Security, Law Enforcement, Firefighting And Related Protective Services. 0.0282

    PCIP44 Percentage of degrees awarded in Public Administration And Social Service Professions. 0.0516

    PCIP45 Percentage of degrees awarded in Social Sciences. 0.0399

    PCIP46 Percentage of degrees awarded in Construction Trades. 0

    PCIP47 Percentage of degrees awarded in Mechanic And Repair Technologies/Technicians. 0

    PCIP48 Percentage of degrees awarded in Precision Production. 0

    PCIP49 Percentage of degrees awarded in Transportation And Materials Moving. 0

    PCIP50 Percentage of degrees awarded in Visual And Performing Arts. 0.0258

    PCIP51 Percentage of degrees awarded in Health Professions And Related Programs. 0

    PCIP52 Percentage of degrees awarded in Business, Management, Marketing, And Related Support Services. 0.1479

    PCIP54 Percentage of degrees awarded in History. 0

    Admission Rate

    0.6538

    Average RetentionRate of retention averaged between full-time and part-time students. 0.4428

    Retention, Full-Time Students

    0.5779

    Retention, Part-Time Students

    0.3077

    Completion Rate

    0.1104

    Enrollment Number of enrolled students 4505

    Male Students Percentage of the student body that is male. 0.4617

    Female Students Percentage of the student body that is female. 0.5383

    White Percentage of the student body that identifies as white. 0.034

    Black Percentage of the student body that identifies as African American. 0.9216

    Hispanic Percentage of the student body that identifies as Hispanic or Latino. 0.0058

    Asian Percentage of the student body that identifies as Asian. 0.0018

    American Indian and Alaskan Native Percentage of the student body that identifies as American Indian or Alaskan Native. 0.0022

    Native Hawaiian and Pacific Islander Percentage of the student body that identifies as Native Hawaiian or Pacific islander. 0.0018

    Two or More Races Percentage of the student body that identifies as two or more races. 0

    Non-Resident Aliens Percentage of the student body that are non-resident aliens. 0.0062

    Race Unknown Percentage of the student body for whom racial identity is unknown. 0.0266

    Percent Parents no HS Diploma Percentage of parents of students whose highest level of education is less than high school. 0.019298937

    Percent Parents HS Diploma Percentage of parents of students whose highest level of education is high school 0.369436786

    Percent Parents Post-Secondary Ed. Percentage of parents of students whose highest level of education is college or above. 0.611264277

    Title IV Students Percentage of student body identified as Title IV 743

    HCM2 Cash Monitoring Schools identified by the Department of Ed for Higher Cash Monitoring Level 2 0

    Net Price

    13435

    Cost of Attendance

    20809

    In-State Tuition and Fees

    9366

    Out-of-State Tuition and Fees

    17136

    Tuition and Fees (Program) Tuition and fees for program-year schools NULL

    Tution Revenue per Full-Time Student

    9657

    Expenditures per Full-Time Student

    7941

    Average Faculty Salary

    7017

    Percent of Students with Federal Loan

    0.8159

    Share of Students with Federal Loan

    0.896382157

    Share of Students with Pell Grant

    0.860906217

    Median Loan Principal Amount upon Entering Repayment

    14600

    Median Debt for Completed Students Median debt for student who completed a course of study 35000

    Median Debt for Incompleted Students Median debt for student who did not complete a course of study 9500

    Median Debt for Family Income $0K-$30K Median debt for students of families with less thank $30,000 income 14457

    Median Debt for Family Income $30K-$75K Median debt for students of families with $30,000-$75,000 income 15000

    Median Debt for Family Income over $75K Median debt for students of families with over $75,000 income 14250

    Median Debt Female Students

    16000

    Median Debt Male Students

    13750

    Median Debt 1st Gen. Students Median debt for first generation college student 14307.5

    Median Debt Not 1st Gen. Students Median debt for not first generation college students 14953

    Cumulative Loan Debt Greater than 90% of Students (90th Percentile)

    48750

    Cumulative Loan Debt Greater than 75% of Students (75th Percentile)

    32704

    Cumulative Loan Debt Greater than 25% of Students (25th Percentile)

    5500

    Cumulative Loan Debt Greater than 10% of Students (10th Percentile)

    3935.5

    Accrediting Agency

    Southern Association of Colleges and Schools Commission on Colleges

    Website

    www.aamu.edu/

    Price Calculator

    www2.aamu.edu/scripts/netpricecalc/npcalc.htm

    Latitude

    34.783368

    Longitude

    -86.568502

  16. School District Composites SY 2017-18 TL 18

    • data-nces.opendata.arcgis.com
    • datasets.ai
    • +2more
    Updated Dec 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (2018). School District Composites SY 2017-18 TL 18 [Dataset]. https://data-nces.opendata.arcgis.com/datasets/nces::school-district-composites-sy-2017-18-tl-18/about
    Explore at:
    Dataset updated
    Dec 20, 2018
    Dataset authored and provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    License

    https://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/

    Area covered
    Description

    The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty. The Census Bureau’s School District Boundary Review program (SDBR) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line 2018 and represent boundaries reported for the 2017-2018 school year. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries. All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  17. Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year...

    • data.iowa.gov
    • s.cnmilf.com
    • +2more
    Updated Jun 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, American Community Survey (2024). Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year Estimates) [Dataset]. https://data.iowa.gov/Community-Demographics/Iowa-Population-25-Years-and-Over-Educational-Atta/jmdm-eaqx
    Explore at:
    application/rdfxml, tsv, application/rssxml, csv, xml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Jun 7, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, American Community Survey
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    Iowa
    Description

    This dataset provides population 25 years and over estimates by educational attainment for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B15003.

    Levels of educational attainment include the following: No schooling completed; Nursery school; Kindergarten; 1st grade; 2nd grade; 3rd grade; 4th grade; 5th grade; 6th grade; 7th grade; 8th grade; 9th grade; 10th grade; 11th grade; 12th grade, no diploma; Regular high school diploma; GED or alternative credential; Some college, less than 1 year; Some college, 1 or more years, no degree; Associate's degree; Bachelor's degree; Master's degree; Professional school degree; and Doctorate degree.

  18. School District Characteristics and Socioeconomic Information (Web Map)

    • hub.arcgis.com
    • atlas-connecteddmv.hub.arcgis.com
    • +1more
    Updated Aug 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2022). School District Characteristics and Socioeconomic Information (Web Map) [Dataset]. https://hub.arcgis.com/maps/ba1dd52b501c4c82a24e02b5f95916df
    Explore at:
    Dataset updated
    Aug 5, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This web map provides and in-depth look at school districts within the United States. Clicking on a school district in the map will reveal different statistics about each district in the pop-up. The statistics presented in this map are approximations based on summarizing American Community Survey(ACS) data using tract centroids. They may differ from published statistics by school districts found on data.census.gov. A few things you will learn from this map:How many public and private schools fall within a district?Socioeconomic factors about the Census Tracts which fall within the district:School enrollment for grades Kindergarten through 12thDisconnected children in the districtChildren living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of population under the age of 19 in the districtFor more information about the data sources:This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases estimates, so values in the map always reflect the newest data available.Current School Districts Layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Public Schools Layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.Private Schools Layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Web Map originally owned by Summers Cleary

  19. US Adult Income

    • kaggle.com
    Updated Jul 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Olafenwa (2017). US Adult Income [Dataset]. https://www.kaggle.com/johnolafenwa/us-census-data/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 14, 2017
    Dataset provided by
    Kaggle
    Authors
    John Olafenwa
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    US Adult Census data relating income to social factors such as Age, Education, race etc.

    The Us Adult income dataset was extracted by Barry Becker from the 1994 US Census Database. The data set consists of anonymous information such as occupation, age, native country, race, capital gain, capital loss, education, work class and more. Each row is labelled as either having a salary greater than ">50K" or "<=50K".

    This Data set is split into two CSV files, named adult-training.txt and adult-test.txt.

    The goal here is to train a binary classifier on the training dataset to predict the column income_bracket which has two possible values ">50K" and "<=50K" and evaluate the accuracy of the classifier with the test dataset.

    Note that the dataset is made up of categorical and continuous features. It also contains missing values The categorical columns are: workclass, education, marital_status, occupation, relationship, race, gender, native_country

    The continuous columns are: age, education_num, capital_gain, capital_loss, hours_per_week

    This Dataset was obtained from the UCI repository, it can be found on

    https://archive.ics.uci.edu/ml/datasets/census+income, http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/

    USAGE This dataset is well suited to developing and testing wide linear classifiers, deep neutral network classifiers and a combination of both. For more info on Combined Deep and Wide Model classifiers, refer to the Research Paper by Google https://arxiv.org/abs/1606.07792

    Refer to this kernel for sample usage : https://www.kaggle.com/johnolafenwa/wage-prediction

    Complete Tutorial is available from http://johnolafenwa.blogspot.com.ng/2017/07/machine-learning-tutorial-1-wage.html?m=1

  20. ACS-ED 2014-2018 Children-Enrolled Public: Demographic Characteristics...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2014-2018 Children-Enrolled Public: Demographic Characteristics (CDP05) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/acs-ed-2014-2018-children-enrolled-public-demographic-characteristics-cdp05-c01c3
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public _domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data. -9 An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small. -8 An '-8' means that the estimate is not applicable or not available. -6 A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution. -5 A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. -3 A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate. -2 A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Champaign County Regional Planning Commission (2024). Educational Attainment [Dataset]. https://data.ccrpc.org/dataset/educational-attainment

Educational Attainment

Explore at:
csv(1753)Available download formats
Dataset updated
Oct 16, 2024
Dataset provided by
Champaign County Regional Planning Commission
Description

Overall educational attainment measures the highest level of education attained by a given individual: for example, an individual counted in the percentage of the measured population with a master’s or professional degree can be assumed to also have a bachelor’s degree and a high school diploma, but they are not counted in the population percentages for those two categories. Overall educational attainment is the broadest education indicator available, providing information about the measured county population as a whole.

Only members of the population aged 25 and older are included in these educational attainment estimates, sourced from the U.S. Census Bureau American Community Survey (ACS).

Champaign County has high educational attainment: over 48 percent of the county's population aged 25 or older has a bachelor's degree or graduate or professional degree as their highest level of education. In comparison, the percentage of the population aged 25 or older in the United States and Illinois with a bachelor's degree in 2023 was 21.8% (+/-0.1) and 22.8% (+/-0.2), respectively. The population aged 25 or older in the U.S. and Illinois with a graduate or professional degree in 2022, respectively, was 14.3% (+/-0.1) and 15.5% (+/-0.2).

Educational attainment data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Educational Attainment for the Population 25 Years and Over.

Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (29 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (6 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018). U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).

Search
Clear search
Close search
Google apps
Main menu