https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Percent of People of All Ages in Poverty for United States (PPAAUS00000A156NCEN) from 1989 to 2023 about percent, child, poverty, and USA.
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.
VITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
In 2023, the poverty rate of the United States was around **** percent. Louisiana was the state with the highest poverty rate, at **** percent. Poverty rates in the United States are higher than in many parts of the world, and minority groups are much more likely to be living in poverty when compared to white people.
In 2023 the poverty rate in the United States was highest among people between 18 and 24, with a rate of 16 percent for male Americans and a rate of 21 percent for female Americans. The lowest poverty rate for both men and women was for those aged between 45 and 54. What is the poverty line? The poverty line is a metric used by the U.S. Census Bureau to define poverty in the United States. It is a specific income level that is considered to be the bare minimum a person or family needs to meet their basic needs. If a family’s annual pre-tax income is below this income level, then they are considered impoverished. The poverty guideline for a family of four in 2021 was 26,500 U.S. dollars. Living below the poverty line According to the most recent data, almost one-fifth of African Americans in the United States live below the poverty line; the most out of any ethnic group. Additionally, over 7.42 million families in the U.S. live in poverty – a figure that has held mostly steady since 1990, outside the 2008 financial crisis which threw 9.52 million families into poverty by 2012. The poverty gender gap Wage inequality has been an ongoing discussion in U.S. discourse for many years now. The poverty gap for women is most pronounced during their child-bearing years, shrinks, and then grows again in old age. While progress has been made on the gender pay gap over the last 30 years, there are still significant disparities, even in occupations that predominantly employ men. Additionally, women are often having to spend more time attending to child and household duties than men.
VITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Note: These layers were compiled by Esri's Demographics Team using data from the Census Bureau's American Community Survey. These data sets are not owned by the City of Rochester.Overview of the map/data: This map shows the percentage of the population living below the federal poverty level over the previous 12 months, shown by tract, county, and state boundaries. Estimates are from the 2018 ACS 5-year samples. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer will be updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico.Census tracts with no population are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.
This map shows households within high ($200,000 or more) and low (less than $25,000) annual income ranges. This is shown as a percentage of total households. The data is attached to tract, county, and state centroids and shows:Percent of households making less than $25,000 annuallyPercent of households making $200,000 or more annuallyThe data shown is household income in the past 12 months. These are the American Community Survey (ACS) most current 5-year estimates: Table B19001. The data layer is updated annually, so this map always shows the most current values from the U.S. Census Bureau. To find the layer used in this map and see the full metadata, visit this Living Atlas item.These categories were constructed using an Arcade expression, which groups the lowest census income categories and normalizes them by total households.
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States SBOI: sa: Most Pressing Problem: Survey High: Poor Sales data was reported at 34.000 % in Mar 2025. This stayed constant from the previous number of 34.000 % for Feb 2025. United States SBOI: sa: Most Pressing Problem: Survey High: Poor Sales data is updated monthly, averaging 34.000 % from Jan 2014 (Median) to Mar 2025, with 131 observations. The data reached an all-time high of 34.000 % in Mar 2025 and a record low of 33.000 % in Jul 2019. United States SBOI: sa: Most Pressing Problem: Survey High: Poor Sales data remains active status in CEIC and is reported by National Federation of Independent Business. The data is categorized under Global Database’s United States – Table US.S042: NFIB Index of Small Business Optimism. [COVID-19-IMPACT]
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Louisiana. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Out of all OECD countries, Cost Rica had the highest poverty rate as of 2022, at over 20 percent. The country with the second highest poverty rate was the United States, with 18 percent. On the other end of the scale, Czechia had the lowest poverty rate at 6.4 percent, followed by Denmark.
The significance of the OECD
The OECD, or the Organisation for Economic Co-operation and Development, was founded in 1948 and is made up of 38 member countries. It seeks to improve the economic and social well-being of countries and their populations. The OECD looks at issues that impact people’s everyday lives and proposes policies that can help to improve the quality of life.
Poverty in the United States
In 2022, there were nearly 38 million people living below the poverty line in the U.S.. About one fourth of the Native American population lived in poverty in 2022, the most out of any ethnicity. In addition, the rate was higher among young women than young men. It is clear that poverty in the United States is a complex, multi-faceted issue that affects millions of people and is even more complex to solve.
There is no country or economy participating in PISA 2012 that can claim that all of its 15-year-old students have achieved a baseline level of proficiency in mathematics, reading and science. Poor performance at school has long-term consequences, both for the individual and for society as a whole. Reducing the number of low-performing students is not only a goal in its own right but also an effective way to improve an education system’s overall performance – and equity, since low performers are disproportionately from socio-economically disadvantaged families. Low-performing Students: Why they Fall Behind and How to Help them Succeed examines low performance at school by looking at low performers’ family background, education career and attitudes towards school. The report also analyses the school practices and educational policies that are more strongly associated with poor student performance. Most important, the evidence provided in the report reveals what policy makers, educators, parents and students themselves can do to tackle low performance and succeed in school.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States SBOI: sa: Most Pressing Problem: Survey Low: Poor Sales data was reported at 2.000 % in Mar 2025. This stayed constant from the previous number of 2.000 % for Feb 2025. United States SBOI: sa: Most Pressing Problem: Survey Low: Poor Sales data is updated monthly, averaging 2.000 % from Jan 2014 (Median) to Mar 2025, with 131 observations. The data reached an all-time high of 2.000 % in Mar 2025 and a record low of 2.000 % in Mar 2025. United States SBOI: sa: Most Pressing Problem: Survey Low: Poor Sales data remains active status in CEIC and is reported by National Federation of Independent Business. The data is categorized under Global Database’s United States – Table US.S042: NFIB Index of Small Business Optimism. [COVID-19-IMPACT]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 41.500 % in 2016. This records an increase from the previous number of 41.000 % for 2013. United States US: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 40.400 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 41.500 % in 2016 and a record low of 34.600 % in 1979. United States US: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States SBOI: sa: Most Pressing Problem: Poor Sales data was reported at 9.000 % in Mar 2025. This stayed constant from the previous number of 9.000 % for Feb 2025. United States SBOI: sa: Most Pressing Problem: Poor Sales data is updated monthly, averaging 9.000 % from Jan 2014 (Median) to Mar 2025, with 131 observations. The data reached an all-time high of 19.000 % in Apr 2020 and a record low of 3.000 % in May 2023. United States SBOI: sa: Most Pressing Problem: Poor Sales data remains active status in CEIC and is reported by National Federation of Independent Business. The data is categorized under Global Database’s United States – Table US.S042: NFIB Index of Small Business Optimism. [COVID-19-IMPACT]
This data is available for licensing to anyone interested in understanding risks around hazardous dams. To request access, click REQUEST ACCESS or email Ken Romano at kromano@ap.org.
Update 2/20/20 This data has been updated with the following: * The dams_in_nid_state_reports.csv file has been updated to include a column for owner_name, as it was provided by the states. Nearly 30,000 dam entries did not have an owner_name provided. Owner names may need deduplication, due to alternate name spellings in the data provided. * New findings regarding dams lacking emergency action plans in Southeastern states, in the Findings section.
The nation’s dams are on average more than a half-century old and, in some cases, weren’t designed to handle the amount of water that could result from the increasingly intense rainstorms of a changing climate. Yet almost no information has been publicly available about the condition of these dams. Since 2002, the U.S. Army Corps of Engineers has redacted inspectors’ condition assessments from its National Inventory of Dams over security concerns; the Corps makes publicly available only the hazard rating of certain dams, which assesses the potential for loss of human life or economic and environmental damage should a dam fail.
The Associated Press has created an exclusive dataset that fills in those information gaps for a subset of dams across the country. It found at least 1,688 high hazard dams that are in poor or unsatisfactory condition, and in places where failure is likely to kill at least one person.
The AP’s analysis is based on data obtained through dozens of state open-records requests, which allowed the AP to compile a dataset that contains both hazard levels and condition ratings for dams in 45 states and Puerto Rico. Five states – Alabama, Illinois, Maryland, New Jersey and Texas – did not fully comply with the records request for reasons described in the methodology and caveats sections below. (Iowa provided all requested documents but had no dams listed as both high hazard and in poor or unsatisfactory condition).
For the subset of high hazard dams in poor or unsatisfactory condition, the AP is sharing state inspection reports and local emergency action plans that provide additional details about the problems of some particular dams, their potential to inundate nearby areas if they were to catastrophically fail and plans to respond should there be a disaster.
The AP also analyzed the annual budget and staffing levels for dam safety offices in each state using data from an annual survey conducted by the U.S. Army Corps of Engineers.
Additionally, the AP obtained data from the Federal Emergency Management Agency and state dam safety offices about $10 million of federal grants that were awarded this fall to 26 states. The grants are the first under the new Rehabilitation of High Hazard Potential Dams Grant Program. The money is to go toward risk assessments and engineering designs to repair high hazard dams that have failed to meet safety standards and pose an unacceptable risk to the public.
The AP’s analysis found: * Update 2/20/20: As storms, floods, and dam breaches have hit Mississippi in recent weeks, emergency action plans have been important in denoting whom to contact, who and what has been in danger, and how to handle a dam emergency. An Associated Press analysis of data received in summer 2018 from state and federal agencies found that 111 of the 375 high hazard dams in Mississippi were missing emergency action plans – nearly 30 percent. Some other Southern states had even more dams lacking emergency plans. In North Carolina, 578 of the 1,277 of high hazard dams, nearly half of them, had no emergency plan. In Georgia, 259 of the 623 were missing emergency plans. In fact, in at least seven Southeastern states, at least 20 percent of the high hazard dams were missing emergency plans as of summer 2018. * There are at least 1,688 high hazard dams in poor or unsatisfactory condition in 44 states and Puerto Rico. These potentially dangerous dams account for about 19% of the more than 8,800 high hazard dams for which the AP obtained condition ratings. Iowa listed no high hazard dams as poor or unsatisfactory. * More than half of the dams in the AP’s list of high hazard facilities in poor or unsatisfactory condition are privately owned, which can create challenges for state regulatory agencies seeking to enforce needed repairs or improvements. * About half of the dams in the AP’s list of high hazard facilities in poor or unsatisfactory condition are used primarily for recreation, though that may not have been the purpose for which the dams originally were built. Nearly one-fifth of the dams are used primarily for flood control. * Georgia had 198 high hazard dams in poor or unsatisfactory condition, the highest number among all states for which the AP obtained data. North Carolina was second with 168 such dams, followed by Pennsylvania with 145, Mississippi with 132, Ohio with 124 and South Carolina with 109. * As of summer 2018, more than a quarter of the high hazard dams in poor or unsatisfactory condition had inspection reports that were more than 1.5 years out of date, and about 35% didn’t have emergency action plans documenting procedures in case of the dam’s failure. Note that some of those dams could have undergone inspections or adopted emergency plans since then. * Budget and staffing levels for state dam safety offices declined following the Great Recession and have generally risen since then. California, which has the nation’s largest dam safety program, boosted its budget from around $13 million in 2017 to $20 million this past year and increased its full-time staff positions from 63 to 77 following the failure of the Oroville dam spillway in 2017. * Thirteen states and Puerto Rico were spending less on dam safety programs in their 2019 fiscal years than they did in 2011, and 11 states had fewer full-time positions in their programs as of last year. Alabama is the only state with no dam safety program. * States often have small dam safety staffs to oversee large numbers of dams. Indiana is representative of many states, with a $500,000 budget and six full-time staff positions for a dam safety office that regulates 840 dams.
The AP’s database of dam inspection records collected from state agencies can be filtered to find the high hazard dams in poor or unsatisfactory condition in your state.
That data also provides key details that can be used for further reporting about the facilities, including their names, exact locations, identification numbers, the year they were built and the dates of their most recent inspections and emergency action plans. For many of these dams, the AP also has provided documents detailing their most recent inspection reports and emergency plans. The datasets on state dam safety program budgets and personnel also can be used to examine how a state’s regulatory oversight has changed over time.
Use the entire dams dataset to map all the dams in your state, find out what share of dams in your state are high hazard and in poor or unsatisfactory condition, and to do further analysis on ownership and purpose.
Some questions to ask:
Are there nearby dams in poor condition that could cause widespread damage if they failed? * Emergency action plans include potential inundation zones if a high hazard dam were to fail. For example, one community potentially in harm’s way is Norwood, Massachusetts, a Boston suburb of nearly 30,000 people. The high hazard dam on nearby Willett Pond is rated in poor condition, primarily because its spillway is capable of handling only about 13% of the water flow from a serious flood, according to a recent inspection report. More than 1,300 properties with structures lie within the dam’s potential inundation zone, including several shopping centers, at least two elementary schools, more than 70 roads and two railroads.
Are there high hazard dams for which there are concerns about whether the structure could withstand a natural disaster? * One example of this is in Alaska, which has five high hazard dams in poor or unsatisfactory condition. Several inspections raised concerns about seismic activity. Inspection reports for the Lower and Upper Wrangell dams note that neither dam “is found to be stable during a seismic event.”
Are there dams with outdated or missing emergency action plans? * One example of this is in New Mexico, where many dams had no emergency action plans as of summer 2018. Many dams there also were rated poor because authorities had no design plans for them. In addition, inspection reports for the majority of the dams mentioned that the dams did not meet standards for a probable maximum precipitation event.
How have state officials responded to previous concerns about the safety of dams? * Following widespread dam failures during intense rainstorms in 2015-2016, South Carolina tripled the personnel in its dam safety program and increased its budget from about $260,000 annually to about $1 million. By contrast, Missouri took no action after a mountaintop reservoir failed in 2005, injuring a park superintendent’s family in the resulting flash flood. Though the governor proposed to significantly expand the number of dams subject to state inspections, the legislation failed to pass.
The AP is making an interactive map made in partnership with ESRI for this dataset available early to aid in reporting.
The interactive displays the 1,688 dams in the dataset that are high hazard and in poor or unsatisfactory condition. Coloring is determined by how overdue its last inspection, as of July 2018, is from its expected inspection frequency. By clicking on individual dams, more detailed information from the AP dataset
While most Americans appear to acknowledge the large gap between the rich and the poor in the U.S., it is not clear if the public is aware of recent changes in income inequality. Even though economic inequality has grown substantially in recent decades, studies have shown that the public's perception of growing income disparities has remained mostly unchanged since the 1980s. This research offers an alternative approach to evaluating how public perceptions of inequality are developed. Centrally, it conceptualizes the public's response to growing economic disparities by applying theories of macro-political behavior and place-based contextual effects to the formation of aggregate perceptions about income inequality. It is argued that most of the public relies on basic information about the economy to form attitudes about inequality and that geographic context---in this case, the American states---plays a role in how views of income disparities are produced. A new measure of state perceptions of growing economic inequality over a 25-year period is used to examine whether the public is responsive to objective changes in economic inequality. Time-series cross-sectional analyses suggest that the public's perceptions of growing inequality are largely influenced by objective state economic indicators and state political ideology. This research has implications for how knowledgeable the public is of disparities between the rich and the poor, whether state context influences attitudes about inequality, and what role the public will have in determining how expanding income differences are addressed through government policy.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Percent of People of All Ages in Poverty for United States (PPAAUS00000A156NCEN) from 1989 to 2023 about percent, child, poverty, and USA.