CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The SSURGO database contains information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS (Natural Resources Conservation Service). The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. The maps outline areas called map units. The map units describe soils and other components that have unique properties, interpretations, and productivity. The information was collected at scales ranging from 1:12,000 to 1:63,360. More details were gathered at a scale of 1:12,000 than at a scale of 1:63,360. The mapping is intended for natural resource planning and management by landowners, townships, and counties. Some knowledge of soils data and map scale is necessary to avoid misunderstandings. The maps are linked in the database to information about the component soils and their properties for each map unit. Each map unit may contain one to three major components and some minor components. The map units are typically named for the major components. Examples of information available from the database include available water capacity, soil reaction, electrical conductivity, and frequency of flooding; yields for cropland, woodland, rangeland, and pastureland; and limitations affecting recreational development, building site development, and other engineering uses. SSURGO datasets consist of map data, tabular data, and information about how the maps and tables were created. The extent of a SSURGO dataset is a soil survey area, which may consist of a single county, multiple counties, or parts of multiple counties. SSURGO map data can be viewed in the Web Soil Survey or downloaded in ESRI® Shapefile format. The coordinate systems are Geographic. Attribute data can be downloaded in text format that can be imported into a Microsoft® Access® database. A complete SSURGO dataset consists of:
GIS data (as ESRI® Shapefiles) attribute data (dbf files - a multitude of separate tables) database template (MS Access format - this helps with understanding the structure and linkages of the various tables) metadata
Resources in this dataset:Resource Title: SSURGO Metadata - Tables and Columns Report. File Name: SSURGO_Metadata_-_Tables_and_Columns.pdfResource Description: This report contains a complete listing of all columns in each database table. Please see SSURGO Metadata - Table Column Descriptions Report for more detailed descriptions of each column.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Metadata - Table Column Descriptions Report. File Name: SSURGO_Metadata_-_Table_Column_Descriptions.pdfResource Description: This report contains the descriptions of all columns in each database table. Please see SSURGO Metadata - Tables and Columns Report for a complete listing of all columns in each database table.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Data Dictionary. File Name: SSURGO 2.3.2 Data Dictionary.csvResource Description: CSV version of the data dictionary
This three inch pixel resolution color aerial photography was flown between March 8 and March 17, 2020. The files are provided in TIF format which is supported by most GIS and CAD software packages. Its intended usage for viewing is 1" = 100'. The photography has been orthorectified to meet National Map Accuracy Standards for its capture scale. The images are georeferenced to the Illinois State Plane, Eastern Zone. The data set is tiled for dissemination into separate tiles, each of which is 5280 feet (1 mile) on a side.This imagery is provided on an as-is basis, with no guarantees of accuracy or suitability for any particular purpose. Lake County, Illinois, assumes no responsibility for conclusions or decisions reached on the basis of this data.This dataset is projected using the Transverse Mercator map projection. The grid coordinate system used is the Illinois State Plane Coordinate System, East Zone (Zone Number Zone 3776, FIPS 1201), with ground coordinates expressed in U.S. Survey Feet.
This layer provides an estimate of flood frequency as one of seven classes:
None: No reasonable possibility of flooding; one chance out of 500 of flooding in any year or less than 1 time in 500 years.Very Rare: Flooding is very unlikely but is possible under extremely unusual weather conditions; less than 1 percent chance of flooding in any year or less than 1 time in 100 years but more than 1 time in 500 years.Rare: Flooding is unlikely but is possible under unusual weather conditions; 1 to 5 percent chance of flooding in any year or nearly 1 to 5 times in 100 years.Occasional: Flooding is expected infrequently under usual weather conditions; 5 to 50 percent chance of flooding in any year or 5 to 50 times in 100 years.Common: (Obsolete Class) Combination of Occasional and FrequentFrequent: Flooding is likely to occur often under usual weather conditions; more than a 50 percent chance of flooding in any year (i.e., 50 times in 100 years), but less than a 50 percent chance of flooding in all months in any year.Very Frequent: Flooding is likely to occur very often under usual weather conditions; more than a 50 percent chance of flooding in all months of any year.Dataset SummaryPhenomenon Mapped: Flooding frequencyUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Source: Natural Resources Conservation ServicePublication Date: November 2023ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the for the contiguous United States and Alaska. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Puerto Rico, the U.S. Virgin Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, Republic of the Marshall Islands, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for flooding frequency is derived from the gSSURGO map unit aggregated attribute table field Flooding Frequency - Dominant Condition (flodfreqdcd).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flooding frequency" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flooding frequency" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
The US Forest Service manages 193 million acres including the nation's 154 National Forests and 20 National Grasslands. These lands provide a wide variety of recreational opportunities, protect sources of clean water, and supply timber and forage.Dataset SummaryPhenomenon Mapped: United States lands managed by the US Forest Service Coordinate System: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, and Puerto RicoVisible Scale: The data is visible at all scales.Source: USFS Surface Ownership Parcels layerPublication Date: February 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Forest Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "forest service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "forest service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in ProThe data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage..This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2017, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
Section boundaries as defined by the US Public Land Survey System (PLSS). PLSS is a way of subdividing and describing land in the United States. Most lands in the public domain are subject to subdivision by this rectangular system of surveys, which is regulated by the U.S. Department of the Interior, Bureau of Land Management. Section boundaries were generated from geodetic latitude and longitude coordinate pairs as recorded on BLM's official protraction diagrams of the state of Alaska. Most corners are protracted corners, calculated by the Bureau of Land Management in lieu of field or survey locations. In 2013 and 2015 the Matanuska-Susitna Borough (MSB) shifted portions of this dataset to more accurately reflect the actual locations of section corners on the ground. These shifts occurred in the more populated areas of the MSB. Contact the MSB GIS division for more information.
The US National Park Service manages 84.4 million acres that include the nation's 59 national parks, many national monuments, and other conservation and historical properties. These lands range from the 13 million acre Wrangell-St. Elias National Park and Preserve in Alaska to the 0.02 acre Thaddeus Kosciuszko National Memorial in Pennsylvania.Dataset SummaryPhenomenon Mapped: Administrative boundaries of units in the United States National Park Service system. Not all lands within the administrative boundaries are owned by the National Park Service.Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States, District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana IslandsVisible Scale: The data is visible at all scalesSource: NPS Administrative Boundaries National Park System Units layerPublication Date: January 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Park Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "national park service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "national park service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
One-eighth of the United States (247 million acres) is managed by the Bureau of Land Management. As part of the Department of the Interior, the agency oversees the 30 million acre National Conservation Lands system, a collection of lands that includes 221 wilderness areas, 23 national monuments and 636 other protected areas. Bureau of Land Management Lands contain over 63,000 oil and gas wells and provide forage for over 18,000 grazing permit holders on 155 million acres of land.Dataset SummaryPhenomenon Mapped: United States lands managed by the US Department of the Interior Bureau of Land Management. Coordinate System: Web Mercator Auxiliary SphereExtent: Contiguous United States and AlaskaVisible Scale: The data is visible at all scales but draws best at scales larger than 1:2,000,000.Source: BLM Surface Management Agency layerPublication Date: November 2023This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Bureau of Land Management lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "bureau of land management" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "bureau of land management" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Data updated daily.
Street centerline was originally developed from the road features on the County's 1:2400 base map. Both address range and a link to street names are included as data attributes. The current data is collected from recorded plats in DXF format or is digitized from plats. The data covers the entire County as well as the incorporated Towns. Purpose: The street centerline coverage was originally developed to support addressing. Fire & Rescue Services and the Sheriff's Office use the address range information for Emergency 911 dispatching; it is also used to update U.S. Census Bureau Tiger data in support of the decennial census. Supplemental Information: Centerline data are maintained from plats and site plans prepared by engineering and surveying firms. Although street centerline is the most current of the County's street data, deviation in construction after plat submittal and recordation may cause centerline to differ from similar County layer, road casing. Centerline contains the most current data; road casing is spatially more accurate because it is updated photogrammetrically. These data are not intended to be used for local surveys or at a scale larger than 1:2400. Data are stored in the corporate ArcSDE Geodatabase as a feature class. The coordinate system is Virginia State Plane (North), Zone 4501, datum NAD83 HARN. Maintenance and Update Frequency: Data is updated on a daily basis. Completeness Report: Features may have been eliminated or generalized due to scale and intended use. To assist Loudoun County, Virginia in the maintenance of the data, please provide any information concerning discovered errors, omissions, or other discrepancies found in the data. Data Owner: Office of Mapping and Geographic Information
The US Fish and Wildlife Service manages the nation's 560 National Wildlife Refuges and thousands of small wetlands and other special management areas including Wildlife Management Areas and Waterfowl Production Areas. These lands cover more than 150 million acres that protect fish, wildlife, plants, and their habitats for the continuing benefit of the American people.Dataset SummaryPhenomenon Mapped: United States lands managed by the US Fish and Wildlife Service. Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, and the Northern Mariana Islands. The layer also includes large National Monuments and Wildlife Refuges in the Pacific Ocean.Visible Scale: The data is visible at all scales.Source: USFWS Interest Simplified layer Publication Date: January 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Fish and Wildlife Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "fish and wildlife service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "fish and wildlife service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
description:
This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm; http://co.centre.pa.us/centreco/conservation/Using_SoilMap_website_and_soildatamart.htm
If viewing this description on the Western Pennsylvania Regional Data Center s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the Explore button (and choosing the Go to resource option) to the right of the ArcGIS Open Dataset text below.
Category: Environment
Organization: Allegheny County
Department: Geographic Information Systems Group; Department of Administrative Services
Temporal Coverage: 2000
Data Notes:
Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot
Development Notes: This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties. The soil map and data used in the SSURGO product were prepared by soil scientists as part of the National Cooperative Soil Survey
Other: none
Related Document(s): Data Dictionary (none)
Frequency - Data Change: As needed
Frequency - Publishing: As needed
Data Steward Name: Eli Thomas
Data Steward Email: gishelp@alleghenycounty.us
; abstract:This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm; http://co.centre.pa.us/centreco/conservation/Using_SoilMap_website_and_soildatamart.htm
If viewing this description on the Western Pennsylvania Regional Data Center s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the Explore button (and choosing the Go to resource option) to the right of the ArcGIS Open Dataset text below.
Category: Environment
Organization: Allegheny County
Department: Geographic Information Systems Group; Department of Administrative Services
Temporal Coverage: 2000
Data Notes:
Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot
Development Notes: This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties. The soil map and data used in the SSURGO product were prepared by soil scientists as part of the National Cooperative Soil Survey
Other: none
Related Document(s): Data Dictionary (none)
Frequency - Data Change: As needed
Frequency - Publishing: As needed
Data Steward Name: Eli Thomas
Data Steward Email: gishelp@alleghenycounty.us
Wetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsUnits: MetersCell Size: 10 metersSource Type: ThematicPixel Type: Unsigned integer 16 bitData Coordinate System: North America Albers Equal Area Conic (WKID 102008)Mosaic Projection: North America Albers Equal Area Conic (WKID 102008)Extent: 50 United States plus Puerto Rico, American Samoa, the US Virgin Islands, the Northern Mariana Islands, and US Minor Outlying IslandsSource: U.S. Fish and Wildlife ServicePublication Date: October 26, 2024 ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the October 26, 2024 version of the NWI. The original NWI features were downloaded from USFWS and then converted to a single part feature class using the Multipart To Singlepart tool. After that, the Dice tool was used to break up features larger than 50,000 vertices. The diced, singlepart features were projected to North America Albers projection, then the Repair Geometry tool was run on the features, using tool defaults, to prepare it for a clean rasterization. The features were then converted to several rasters in North America Albers projection using the Polygon to Raster Tool. The National Land Cover Dataset was used as a snap raster for the rasterization process. The rasters representing different parts of the USA are served together as a single layer from a mosaic dataset on the server.This layer includes attributes from the original dataset as well as attributes added by Esri for use in the default pop-up and to allow the user to query and filter the data. NWI derived attributes:Wetland Code - a code that identifies specific attributes of the wetlandWetland Type - one of 8 wetland typesEsri created attributes:System - code indicating the system and subsystem of the wetlandClass - code indicating the class and subclass of the wetlandModifier 1, Modifier 2, Modifier 3, Modifier 4 - these four fields contain letter codes for modifiers applied to the wetland descriptionSystem Name - the name of the system (Marine, Estuarine, Riverine, Lacustrine, or Palustrine)Subsystem Name - the name of the subsystemClass Name - the name of the classSubclass Name - the name of the subclassModifier 1 Name, Modifier 2 Name, Modifier 3 Name , Modifier 4 Name - these four fields contain names for modifiers applied to the wetland descriptionPopup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.The layer serves an index value from a mosaic dataset on the enterprise server. It uses an attribute table function on the mosaic to serve the attributes that appear in the popup for the layer. Because there are more than 2,000 integer values served by the layer, most map clients can not render a legend for this layer. A colormap is used after the attribute table function on the mosaic dataset to help the layer render in the colors intended for the layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "USA Wetlands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "USA Wetlands" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Great Smoky Mountains National Park 1931 Park East Topographic Map
How should this data set be cited?
United States Geologic Survey, 1931, Topographic Map. Great Smoky Mountains National Park. Tennessee and North Carolina. (East Half). Online Links:
http://science.nature.nps.gov/nrdata
What geographic area does the data set cover?
West_Bounding_Coordinate: -84.007769 East_Bounding_Coordinate: -83.037582 North_Bounding_Coordinate: 35.790660 South_Bounding_Coordinate: 35.418718
What does it look like?
Does the data set describe conditions during a particular time period?
Calendar_Date: 09-Mar-2015Currentness_Reference: publication date
What is the general form of this data set?
Geospatial_Data_Presentation_Form: raster digital data
How does the data set represent geographic features?
How are geographic features stored in the data set? This is a Raster data set.
What coordinate system is used to represent geographic features? Horizontal positions are specified in geographic coordinates, that is, latitude and longitude. Latitudes are given to the nearest 0.000000. Longitudes are given to the nearest 0.000000. Latitude and longitude values are specified in Decimal degrees.
The horizontal datum used is North American Datum of 1983. The ellipsoid used is Geodetic Reference System 80. The semi-major axis of the ellipsoid used is 6378137.000000. The flattening of the ellipsoid used is 1/298.257222.
Vertical_Coordinate_System_Definition:
Altitude_System_Definition:
Altitude_Datum_Name: North American Vertical Datum of 1988 Altitude_Resolution: 0.000025 Altitude_Distance_Units: feet Altitude_Encoding_Method:
Explicit elevation coordinate included with horizontal coordinates
How does the data set describe geographic features?
Entity_and_Attribute_Overview:
Where possible entity attribute population is completed automatically by the GIS/SQL database software. Enclosed herein are Attribute Domains and lists of legal values (LOV) where attributes are populated by "Picklists".
Who produced the data set?
Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
United States Geologic Survey
Who also contributed to the data set?
To whom should users address questions about the data?
National Park Service Attn: Thomas Colson GIS Specialist 107 Park Headquarters Road Gatlinburg, Tennessee 37738 United States
(865)436-1701 (voice) GRSM_Resource_Management@nps.gov
Hours_of_Service: 0800-1730
Why was the data set created?
For the display, query, and analysis of spatial and tabular data.
How was the data set created?
From what previous works were the data drawn?
How were the data generated, processed, and modified?
Date: 28-Mar-2015 (process 1 of 1)
These data contain location values from numerous resource research, inventory, and monitoring projects spanning over many decades. The National Park Service is unable to determin the process steps used to depict many locations, citing lack of reliable data. When known, map source is given as a range of values.
What similar or related data should the user be aware of?
How reliable are the data; what problems remain in the data set?
How well have the observations been checked? Attribute accuracy is tested by manual comparison of the source with hard copy plots and/or symbolized display of the map data on an interactive computer graphic system. Selected attributes that cannot be visually verified on plots or on screen are interactively queried and verified on screen. In addition, the attributes are tested against a master set of valid attributes. All attribute data conform to the attribute codes in the signed classification and correlation document and amendment(s).
How accurate are the geographic locations? These data contain location values from numerous resource research, inventory, and monitoring projects spanning over many decades. The National Park Service is unable to asses the positional accuracy of many locations, citing lack of reliable data. When known, estimated horizontal precision is given as a range of possible values.
Statements of horizontal positional accuracy are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For horizontal accuracy, this standard is met if at least 90 percent of points tested are within 0.02 inch (at map scale) of the true position. Additional offsets to positions may have been introduced where feature density is high to improve the legibility of map symbols. In addition, the digitizing of maps is estimated to contain a horizontal positional error of less than or equal to 0.003 inch standard error (at map scale) in the two component directions relative to the source maps. Visual comparison between the map graphic (including digital scans of the graphic) and plots or digital displays of points, lines, and areas, is used as control to assess the positional accuracy of digital data. Digital map elements along the adjoining edges of data sets are aligned if they are within a 0.02 inch tolerance (at map scale). Features with like dimensionality (for example, features that all are delineated with lines), with or without like characteristics, that are within the tolerance are aligned by moving the features equally to a common point. Features outside the tolerance are not moved; instead, a feature of type connector is added to join the features.
This hardcopy map was scanned and georectified using current USGS 1:24k-scale topographic maps. This map is for reference purpose only, and there are likey several gross horizontal errors committed during rectification.
How accurate are the heights or depths? Statements of vertical positional accuracy for elevation of these points are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For vertical accuracy, this standard is met if at least 90 percent of well-defined points tested are within one-half contour interval of the correct value. Elevations of points printed on the published map meet this standard; the contour intervals of the maps vary. These elevations were transcribed into the digital data; the accuracy of this transcription was checked by visual comparison between the data and the map. This statement is generally true for the most common sources of these data. Other sources and methods may have been used to create or update these data. In some cases, additional information may be found in the feature-level metadata report.
Where are the gaps in the data? What is missing? Data completeness for these data reflect content of the source data. Features may have been eliminated or generalized on the source data due to scale and legibility constraints. For information on collection and inclusion criteria, see U.S. Geological Survey, 1994, Standards for 1:24,000-Scale Digital Line Graphs and Quadrangle Maps: National Mapping Program Technical Instructions and U.S. Geological Survey, 1994, Standards for Digital Line Graphs: National Mapping Program Technical Instructions.
How consistent are the relationships among the observations, including topology? No duplicate features exist nor duplicate points in a data string. Point data are represented by two sets of coordinate pairs, each with the same coordinate values, contained in the "Shape" Column, and "X_COORD, Y_COORD" Columns.
Database engine scripts automatically populate many of the possible "List of Values" for those columns that derive their attrtibute from other source data (see Entity Attribute Section of this document for details), thereby enforcing Attribute Accuracy. Database engine scripts also prevent the entry of duplication location coordinates, ensure the consistency and format of binary data representing geographic coordinates, and spatial and attribute index integrity.
How can someone get a copy of the data set?
Are there legal restrictions on access or use of the data?
Who distributes the data set? (Distributor 1 of 1)
Thomas Colson National Park Service GIS Specialist 107 Park Headquarters Rd. Gatlinburg, Tennessee 37738 United States
(865)436-1701 (voice) GRSM_Resource_Management@nps.gov
Hours_of_Service: 0800-1730 EST
What's the catalog number I need to order this data set? Downloadable Data
What legal disclaimers am I supposed to read?
The National Park Service shall not be held liable for improper or incorrect use of the data described and/or contained herein. These data and related graphics (i.e. GIF or JPG format files) are not legal documents and are not intended to be used as such. The information contained in these data is dynamic and may change over time. The data are not better than the original sources from which they were derived. It is the responsibility of the data user to use the data appropriately and consistent within the limitations of geospatial data in general and these data in particular. The related graphics are intended to aid the data user in acquiring relevant data; it is not appropriate to use the related graphics as data. The National Park Service gives no warranty, expressed or implied, as to the accuracy, reliability, or completeness of these data. It is strongly recommended that these data are directly acquired from an NPS server and not indirectly through other sources which may have changed the data in some way. Although these data have been processed successfully on computer systems at the National Park Service, no warranty expressed or implied is made regarding the utility of the data
Great Smoky Mountains National Park 1949 Park Topographic Map
How should this data set be cited?
United States Geologic Survey, 1949 , Topographic Map. Great Smoky Mountains National Park. Tennessee and North Carolina. Online Links:
http://science.nature.nps.gov/nrdata
What geographic area does the data set cover?
West_Bounding_Coordinate: -84.007769 East_Bounding_Coordinate: -83.037582 North_Bounding_Coordinate: 35.790660 South_Bounding_Coordinate: 35.418718
What does it look like?
Does the data set describe conditions during a particular time period?
Calendar_Date: 09-Mar-2015Currentness_Reference: publication date
What is the general form of this data set?
Geospatial_Data_Presentation_Form: raster digital data
How does the data set represent geographic features?
How are geographic features stored in the data set? This is a Raster data set.
What coordinate system is used to represent geographic features? Horizontal positions are specified in geographic coordinates, that is, latitude and longitude. Latitudes are given to the nearest 0.000000. Longitudes are given to the nearest 0.000000. Latitude and longitude values are specified in Decimal degrees.
The horizontal datum used is North American Datum of 1983. The ellipsoid used is Geodetic Reference System 80. The semi-major axis of the ellipsoid used is 6378137.000000. The flattening of the ellipsoid used is 1/298.257222.
Vertical_Coordinate_System_Definition:
Altitude_System_Definition:
Altitude_Datum_Name: North American Vertical Datum of 1988 Altitude_Resolution: 0.000025 Altitude_Distance_Units: feet Altitude_Encoding_Method:
Explicit elevation coordinate included with horizontal coordinates
How does the data set describe geographic features?
Entity_and_Attribute_Overview:
Where possible entity attribute population is completed automatically by the GIS/SQL database software. Enclosed herein are Attribute Domains and lists of legal values (LOV) where attributes are populated by "Picklists".
Who produced the data set?
Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
United States Geologic Survey
Who also contributed to the data set?
To whom should users address questions about the data?
National Park Service Attn: Thomas Colson GIS Specialist 107 Park Headquarters Road Gatlinburg, Tennessee 37738 United States
(865)436-1701 (voice) GRSM_Resource_Management@nps.gov
Hours_of_Service: 0800-1730
Why was the data set created?
For the display, query, and analysis of spatial and tabular data.
How was the data set created?
From what previous works were the data drawn?
How were the data generated, processed, and modified?
Date: 28-Mar-2015 (process 1 of 1)
These data contain location values from numerous resource research, inventory, and monitoring projects spanning over many decades. The National Park Service is unable to determin the process steps used to depict many locations, citing lack of reliable data. When known, map source is given as a range of values.
What similar or related data should the user be aware of?
How reliable are the data; what problems remain in the data set?
How well have the observations been checked? Attribute accuracy is tested by manual comparison of the source with hard copy plots and/or symbolized display of the map data on an interactive computer graphic system. Selected attributes that cannot be visually verified on plots or on screen are interactively queried and verified on screen. In addition, the attributes are tested against a master set of valid attributes. All attribute data conform to the attribute codes in the signed classification and correlation document and amendment(s).
How accurate are the geographic locations? These data contain location values from numerous resource research, inventory, and monitoring projects spanning over many decades. The National Park Service is unable to asses the positional accuracy of many locations, citing lack of reliable data. When known, estimated horizontal precision is given as a range of possible values.
Statements of horizontal positional accuracy are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For horizontal accuracy, this standard is met if at least 90 percent of points tested are within 0.02 inch (at map scale) of the true position. Additional offsets to positions may have been introduced where feature density is high to improve the legibility of map symbols. In addition, the digitizing of maps is estimated to contain a horizontal positional error of less than or equal to 0.003 inch standard error (at map scale) in the two component directions relative to the source maps. Visual comparison between the map graphic (including digital scans of the graphic) and plots or digital displays of points, lines, and areas, is used as control to assess the positional accuracy of digital data. Digital map elements along the adjoining edges of data sets are aligned if they are within a 0.02 inch tolerance (at map scale). Features with like dimensionality (for example, features that all are delineated with lines), with or without like characteristics, that are within the tolerance are aligned by moving the features equally to a common point. Features outside the tolerance are not moved; instead, a feature of type connector is added to join the features.
This hardcopy map was scanned and georectified using current USGS 1:24k-scale topographic maps. This map is for reference purpose only, and there are likey several gross horizontal errors committed during rectification.
How accurate are the heights or depths? Statements of vertical positional accuracy for elevation of these points are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For vertical accuracy, this standard is met if at least 90 percent of well-defined points tested are within one-half contour interval of the correct value. Elevations of points printed on the published map meet this standard; the contour intervals of the maps vary. These elevations were transcribed into the digital data; the accuracy of this transcription was checked by visual comparison between the data and the map. This statement is generally true for the most common sources of these data. Other sources and methods may have been used to create or update these data. In some cases, additional information may be found in the feature-level metadata report.
Where are the gaps in the data? What is missing? Data completeness for these data reflect content of the source data. Features may have been eliminated or generalized on the source data due to scale and legibility constraints. For information on collection and inclusion criteria, see U.S. Geological Survey, 1994, Standards for 1:24,000-Scale Digital Line Graphs and Quadrangle Maps: National Mapping Program Technical Instructions and U.S. Geological Survey, 1994, Standards for Digital Line Graphs: National Mapping Program Technical Instructions.
How consistent are the relationships among the observations, including topology? No duplicate features exist nor duplicate points in a data string. Point data are represented by two sets of coordinate pairs, each with the same coordinate values, contained in the "Shape" Column, and "X_COORD, Y_COORD" Columns.
Database engine scripts automatically populate many of the possible "List of Values" for those columns that derive their attrtibute from other source data (see Entity Attribute Section of this document for details), thereby enforcing Attribute Accuracy. Database engine scripts also prevent the entry of duplication location coordinates, ensure the consistency and format of binary data representing geographic coordinates, and spatial and attribute index integrity.
How can someone get a copy of the data set?
Are there legal restrictions on access or use of the data?
Who distributes the data set? (Distributor 1 of 1)
Thomas Colson National Park Service GIS Specialist 107 Park Headquarters Rd. Gatlinburg, Tennessee 37738 United States
(865)436-1701 (voice) GRSM_Resource_Management@nps.gov
Hours_of_Service: 0800-1730 EST
What's the catalog number I need to order this data set? Downloadable Data
What legal disclaimers am I supposed to read?
The National Park Service shall not be held liable for improper or incorrect use of the data described and/or contained herein. These data and related graphics (i.e. GIF or JPG format files) are not legal documents and are not intended to be used as such. The information contained in these data is dynamic and may change over time. The data are not better than the original sources from which they were derived. It is the responsibility of the data user to use the data appropriately and consistent within the limitations of geospatial data in general and these data in particular. The related graphics are intended to aid the data user in acquiring relevant data; it is not appropriate to use the related graphics as data. The National Park Service gives no warranty, expressed or implied, as to the accuracy, reliability, or completeness of these data. It is strongly recommended that these data are directly acquired from an NPS server and not indirectly through other sources which may have changed the data in some way. Although these data have been processed successfully on computer systems at the National Park Service, no warranty expressed or implied is made regarding the utility of the data on other
USNG is standard that established a nationally consistent grid reference system. It provides a seamless plane coordinate system across jurisdictional boundaries and map scales; it enables precise position referencing with GPS, web map portals, and hardcopy maps. USNG enables a practical system of geo-addresses and a universal map index. This data resides in the GCS 1983 coordinate system and is most suitable for viewing over North America. This layer shows 100-meter grid squares.
U.S. National GridThis feature layer, utilizing data from the Federal Geographic Data Committee (FGDC), displays the U.S. National Grid (USNG). The FGDC provides standards for a National Grid. Per the FGDC, "The objective of this standard is to create a more favorable environment for developing location-based services within the United States and to increase the interoperability of location services appliances with printed map products by establishing a nationally consistent grid reference system as the preferred grid for National Spatial Data Infrastructure (NSDI) applications. This standard defines the US National Grid. The U.S. National Grid is based on universally defined coordinate and grid systems and can, therefore, be easily extended for use world-wide as a universal grid reference system."Note: popups can be viewed for the USNG 1000m and USNG 100m layers.Note: the USNG 100m layer is only displayed for certain cities. To view those places, please select a row in the attribute table and then center (zoom) on selection.U.S. National Grid - Grid Zone DesignationsTop: 100,000-meter and 10,000-meter Square IdentificationsBottom: 1,000-meter and 100-meter Square IdentificationsData downloaded: October, 2011Data modifications: The Percent Complete field was removed from all layers. The following fields were added to the original data for layers:USNG 1000m - UTM ZoneUSNG 100m - Place; RegionFor more information:Standard for a U.S. National GridUnited States National GridHow to read a United States National Grid (USNG) spatial addressFor feedback, please contact: ArcGIScomNationalMaps@esri.comFederal Geographic Data Committee (FGDC)Per the FGDC, "The Federal Geographic Data Committee (FGDC) is an organized structure of Federal geospatial professionals and constituents that provide executive, managerial, and advisory direction and oversight for geospatial decisions and initiatives across the Federal government. In accordance with Office of Management and Budget (OMB) Circular A-16, the FGDC is chaired by the Secretary of the Interior with the Deputy Director for Management, OMB as Vice-Chair."
This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Erosion_Class.Erosion, the loss of soil due to the effects of water and wind, can lead to serious degradation of lands and the loss of agricultural productivity.This layer classifies the amount of soil loss in the top soil layers in 5 classes:None: Area of soil deposition.Class 1: In this map unit,1 to 25 percent of the original topsoil has been lost to erosion. Class 2: In this map unit, 1 to 25 percent of the original topsoil has been lost to erosion.Class 3: In this map unit, 75 to 99 percent of the original topsoil has been lost to erosion.Class 4: In this map unit, all of the original topsoil has been lost to erosionDataset SummaryPhenomenon Mapped: Top soil loss due to erosionUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: July 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for runoff is derived from the gSSURGO component table field Erosion Class (erocl). The value in this layer is the dominant condition found within the map unit.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erosion class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erosion class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
The Farmland Protection Policy Act, part of the 1981 Farm Bill, is intended to limit federal activities that contribute to the unnecessary conversion of farmland to other uses. The law applies to construction projects funded by the federal government such as highways, airports, and dams, and to the management of federal lands. As part of the implementation of this law, the Natural Resources Conservation Service identifies high quality agricultural soils as prime farmland, unique farmland, and land of statewide or local importance. Each category may contain one or more limitations such as Prime Farmland if Irrigated. For more information of farmland classification see the National Soil Survey Handbook.Dataset SummaryPhenomenon Mapped: FarmlandGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024Data from the gNATSGO database was used to create the layer for the for the contiguous United States and Alaska. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Puerto Rico, the U.S. Virgin Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, Republic of the Marshall Islands, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for farmland class is derived from the gSSURGO map unit table field Farm Class (farmlndcl).What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "farmland" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "farmland" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Data Dictionary'All areas are prime farmland' 1;'Farmland of local importance' 2;'Farmland of statewide importance' 3;'Farmland of statewide importance, if drained' 4;'Farmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing season' 5;'Farmland of statewide importance, if irrigated' 6;'Farmland of statewide importance, if irrigated and drained' 7;'Farmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing season' 8;'Farmland of statewide importance, if irrigated and reclaimed of excess salts and sodium' 9;'Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60' 10;'Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing season' 11;'Farmland of statewide importance, if warm enough' 12;'Farmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing season' 13;'Farmland of unique importance' 14;'Not prime farmland' 15;'Prime farmland if drained' 16;'Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season' 17;'Prime farmland if irrigated' 18;'Prime farmland if irrigated and drained' 19;'Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season' 20;'Prime farmland if irrigated and reclaimed of excess salts and sodium' 21;'Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60' 22;'Prime farmland if protected from flooding or not frequently flooded during the growing season' 23;'Prime farmland if subsoiled, completely removing the root inhibiting soil layer' 24;'Farmland of local importance, if irrigated' 25"Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or
Erosion, the loss of soil due to the effects of water and wind, leads to serious degradation of lands and the loss of agricultural productivity. This layer rates erosion in the past tense, i.e. how much of the original topsoil has been lost in each map unit.What time frame is implied for the soil loss? We asked Bob Dobos, soil scientist - interpretations at the National Soil Survey Center that question. Here is what he writes:"Accelerated erosion, either by wind or water, is caused typically by the activities of humans. We try to estimate the degree of erosion, but that can be dicey because of possible lack of an uneroded state. The timing of the erosion is not something that we try to establish. In my opinion, what is being observed is the degree of erosion since the first time the soil was farmed, perhaps 500 years or so in some places, much more recent in others. Since the observation of a soil is a snapshot in time, the rate of erosion or the time zero of erosion is not considered. Natural erosion also occurs as is evidenced by the Grand Canyon or the Channeled Scablands. I have never worked in an area that has visible evidence of natural erosion."This layer classifies the amount of soil loss in the top soil layers in 5 classes:None: Area of soil deposition.Class 1: In this map unit,1 to 25 percent of the original topsoil has been lost to erosion. Class 2: In this map unit, 25 to 75 percent of the original topsoil has been lost to erosion.Class 3: In this map unit, 75 to 99 percent of the original topsoil has been lost to erosion.Class 4: In this map unit, all of the original topsoil has been lost to erosion.Dataset SummaryPhenomenon Mapped: Top soil loss due to erosionGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024Data from the gNATSGO database was used to create the layer for the for the contiguous United States and Alaska. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Puerto Rico, the U.S. Virgin Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, Republic of the Marshall Islands, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for runoff is derived from the gSSURGO component table field Erosion Class (erocl). The value in this layer is the dominant condition found within the map unit.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erosion class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erosion class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The SSURGO database contains information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS (Natural Resources Conservation Service). The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. The maps outline areas called map units. The map units describe soils and other components that have unique properties, interpretations, and productivity. The information was collected at scales ranging from 1:12,000 to 1:63,360. More details were gathered at a scale of 1:12,000 than at a scale of 1:63,360. The mapping is intended for natural resource planning and management by landowners, townships, and counties. Some knowledge of soils data and map scale is necessary to avoid misunderstandings. The maps are linked in the database to information about the component soils and their properties for each map unit. Each map unit may contain one to three major components and some minor components. The map units are typically named for the major components. Examples of information available from the database include available water capacity, soil reaction, electrical conductivity, and frequency of flooding; yields for cropland, woodland, rangeland, and pastureland; and limitations affecting recreational development, building site development, and other engineering uses. SSURGO datasets consist of map data, tabular data, and information about how the maps and tables were created. The extent of a SSURGO dataset is a soil survey area, which may consist of a single county, multiple counties, or parts of multiple counties. SSURGO map data can be viewed in the Web Soil Survey or downloaded in ESRI® Shapefile format. The coordinate systems are Geographic. Attribute data can be downloaded in text format that can be imported into a Microsoft® Access® database. A complete SSURGO dataset consists of:
GIS data (as ESRI® Shapefiles) attribute data (dbf files - a multitude of separate tables) database template (MS Access format - this helps with understanding the structure and linkages of the various tables) metadata
Resources in this dataset:Resource Title: SSURGO Metadata - Tables and Columns Report. File Name: SSURGO_Metadata_-_Tables_and_Columns.pdfResource Description: This report contains a complete listing of all columns in each database table. Please see SSURGO Metadata - Table Column Descriptions Report for more detailed descriptions of each column.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Metadata - Table Column Descriptions Report. File Name: SSURGO_Metadata_-_Table_Column_Descriptions.pdfResource Description: This report contains the descriptions of all columns in each database table. Please see SSURGO Metadata - Tables and Columns Report for a complete listing of all columns in each database table.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Data Dictionary. File Name: SSURGO 2.3.2 Data Dictionary.csvResource Description: CSV version of the data dictionary