The Latin America and the Caribbean Population Time Series data set provides total population estimates using spatially consistent and comparable Units for Latin American municipalities or equivalent administrative Units for the years 1990 and 2000. The data set consists of two vector polygon layers: one layer displays population estimates for subnational administrative Units in 1990 and 2000, including population counts, density, and percent change, at the municipality level or equivalent (level 2); a second layer summarizes this information at the country level (level 0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LAC is the most water-rich region in the world by most metrics; however, water resource distribution throughout the region does not correspond demand. To understand water risk throughout the region, this dataset provides population and land area estimates for factors related to water risk, allowing users to explore vulnerability throughout the region to multiple dimensions of water risk. This dataset contains estimates of populations living in areas of water stress and risk in 27 countries in Latin America and the Caribbean (LAC) at the municipal level. The dataset contains categories of 18 factors related to water risk and 39 indices of water risk and population estimates within each with aggregations possible at the basin, state, country, and regional level. The population data used to generate this dataset were obtained from the WorldPop project 2020 UN-adjusted population projections, while estimates of water stress and risk come from WRI’s Aqueduct 3.0 Water Risk Framework. Municipal administrative boundaries are from the Database of Global Administrative Areas (GADM). For more information on the methodology users are invited to read IADB Technical Note IDB-TN-2411: “Scarcity in the Land of Plenty”, and WRIs “Aqueduct 3.0: Updated Decision-relevant Global Water Risk Indicators”.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Country Club Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Country Club, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Country Club.
Key observations
Among the Hispanic population in Country Club, regardless of the race, the largest group is of Mexican origin, with a population of 203 (84.58% of the total Hispanic population).
https://i.neilsberg.com/ch/country-club-mo-population-by-race-and-ethnicity.jpeg" alt="Country Club Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Club Population by Race & Ethnicity. You can refer the same here
https://search.gesis.org/research_data/datasearch-api_worldbank_org_v2_datacatalog-69https://search.gesis.org/research_data/datasearch-api_worldbank_org_v2_datacatalog-69
This web site includes statistics on poverty and other distributional and social variables from 25 Latin American and Caribbean (LAC) countries. All statistics are computed from microdata of the main household surveys carried out in these countries using a homogenous methodology (data permitting). SEDLAC allows users to monitor the trends in poverty and other distributional and social indicators in the region. The database is available in the form of brief reports, charts and electronic Excel tables with information for each country/year. In addition, the website visitor can carry out dynamic searches online. - Periodicity: Annual - Number of Economies: 24 - In each period the sample of countries represents more than 97% of LAC total population. The database mainly covers the 1990s and 2000s, although we also present information for previous decades in a few countries. Statistics are updated periodically. - Update Frequency: Biannually - Update Schedule: Fall and Spring - Access Option: Query tool
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global patterns of current and future road infrastructure - Supplementary spatial data
Authors: Johan Meijer, Mark Huijbregts, Kees Schotten, Aafke Schipper
Research paper summary: Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world's last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.
Contents: The GRIP dataset consists of global and regional vector datasets in ESRI filegeodatabase and shapefile format, and global raster datasets of road density at a 5 arcminutes resolution (~8x8km). The GRIP dataset is mainly aimed at providing a roads dataset that is easily usable for scientific global environmental and biodiversity modelling projects. The dataset is not suitable for navigation. GRIP4 is based on many different sources (including OpenStreetMap) and to the best of our ability we have verified their public availability, as a criteria in our research. The UNSDI-Transportation datamodel was applied for harmonization of the individual source datasets. GRIP4 is provided under a Creative Commons License (CC-0) and is free to use. The GRIP database and future global road infrastructure scenario projections following the Shared Socioeconomic Pathways (SSPs) are described in the paper by Meijer et al (2018). Due to shapefile file size limitations the global file is only available in ESRI filegeodatabase format.
Regional coding of the other vector datasets in shapefile and ESRI fgdb format:
Road density raster data:
Keyword: global, data, roads, infrastructure, network, global roads inventory project (GRIP), SSP scenarios
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Brazos Country Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Brazos Country, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Brazos Country.
Key observations
Among the Hispanic population in Brazos Country, regardless of the race, the largest group is of other Hispanic or Latino origin, with a population of 1 (55.56% of the total Hispanic population).
https://i.neilsberg.com/ch/brazos-country-tx-population-by-race-and-ethnicity.jpeg" alt="Brazos Country Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Brazos Country Population by Race & Ethnicity. You can refer the same here
Gallup Worldwide Research continually surveys residents in more than 150 countries, representing more than 98% of the world's adult population, using randomly selected, nationally representative samples. Gallup typically surveys 1,000 individuals in each country, using a standard set of core questions that has been translated into the major languages of the respective country. In some regions, supplemental questions are asked in addition to core questions. Face-to-face interviews are approximately 1 hour, while telephone interviews are about 30 minutes. In many countries, the survey is conducted once per year, and fieldwork is generally completed in two to four weeks. The Country Dataset Details spreadsheet displays each country's sample size, month/year of the data collection, mode of interviewing, languages employed, design effect, margin of error, and details about sample coverage.
Gallup is entirely responsible for the management, design, and control of Gallup Worldwide Research. For the past 70 years, Gallup has been committed to the principle that accurately collecting and disseminating the opinions and aspirations of people around the globe is vital to understanding our world. Gallup's mission is to provide information in an objective, reliable, and scientifically grounded manner. Gallup is not associated with any political orientation, party, or advocacy group and does not accept partisan entities as clients. Any individual, institution, or governmental agency may access the Gallup Worldwide Research regardless of nationality. The identities of clients and all surveyed respondents will remain confidential.
Sample survey data [ssd]
SAMPLING AND DATA COLLECTION METHODOLOGY With some exceptions, all samples are probability based and nationally representative of the resident population aged 15 and older. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population of the entire country. Exceptions include areas where the safety of interviewing staff is threatened, scarcely populated islands in some countries, and areas that interviewers can reach only by foot, animal, or small boat.
Telephone surveys are used in countries where telephone coverage represents at least 80% of the population or is the customary survey methodology (see the Country Dataset Details for detailed information for each country). In Central and Eastern Europe, as well as in the developing world, including much of Latin America, the former Soviet Union countries, nearly all of Asia, the Middle East, and Africa, an area frame design is used for face-to-face interviewing.
The typical Gallup Worldwide Research survey includes at least 1,000 surveys of individuals. In some countries, oversamples are collected in major cities or areas of special interest. Additionally, in some large countries, such as China and Russia, sample sizes of at least 2,000 are collected. Although rare, in some instances the sample size is between 500 and 1,000. See the Country Dataset Details for detailed information for each country.
FACE-TO-FACE SURVEY DESIGN
FIRST STAGE In countries where face-to-face surveys are conducted, the first stage of sampling is the identification of 100 to 135 ultimate clusters (Sampling Units), consisting of clusters of households. Sampling units are stratified by population size and or geography and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size, otherwise simple random sampling is used. Samples are drawn independent of any samples drawn for surveys conducted in previous years.
There are two methods for sample stratification:
METHOD 1: The sample is stratified into 100 to 125 ultimate clusters drawn proportional to the national population, using the following strata: 1) Areas with population of at least 1 million 2) Areas 500,000-999,999 3) Areas 100,000-499,999 4) Areas 50,000-99,999 5) Areas 10,000-49,999 6) Areas with less than 10,000
The strata could include additional stratum to reflect populations that exceed 1 million as well as areas with populations less than 10,000. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 8
METHOD 2:
A multi-stage design is used. The country is first stratified by large geographic units, and then by smaller units within geography. A minimum of 33 Primary Sampling Units (PSUs), which are first stage sampling units, are selected. The sample design results in 100 to 125 ultimate clusters.
SECOND STAGE
Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day, and where possible, on different days. If an interviewer cannot obtain an interview at the initial sampled household, he or she uses a simple substitution method. Refer to Appendix C for a more in-depth description of random route procedures.
THIRD STAGE
Respondents are randomly selected within the selected households. Interviewers list all eligible household members and their ages or birthdays. The respondent is selected by means of the Kish grid (refer to Appendix C) in countries where face-to-face interviewing is used. The interview does not inform the person who answers the door of the selection criteria until after the respondent has been identified. In a few Middle East and Asian countries where cultural restrictions dictate gender matching, respondents are randomly selected using the Kish grid from among all eligible adults of the matching gender.
TELEPHONE SURVEY DESIGN
In countries where telephone interviewing is employed, random-digit-dial (RDD) or a nationally representative list of phone numbers is used. In select countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day. Appointments for callbacks that fall within the survey data collection period are made.
PANEL SURVEY DESIGN
Prior to 2009, United States data were collected using The Gallup Panel. The Gallup Panel is a probability-based, nationally representative panel, for which all members are recruited via random-digit-dial methodology and is only used in the United States. Participants who elect to join the panel are committing to the completion of two to three surveys per month, with the typical survey lasting 10 to 15 minutes. The Gallup Worldwide Research panel survey is conducted over the telephone and takes approximately 30 minutes. No incentives are given to panel participants. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 9
QUESTION DESIGN
Many of the Worldwide Research questions are items that Gallup has used for years. When developing additional questions, Gallup employed its worldwide network of research and political scientists1 to better understand key issues with regard to question development and construction and data gathering. Hundreds of items were developed, tested, piloted, and finalized. The best questions were retained for the core questionnaire and organized into indexes. Most items have a simple dichotomous ("yes or no") response set to minimize contamination of data because of cultural differences in response styles and to facilitate cross-cultural comparisons.
The Gallup Worldwide Research measures key indicators such as Law and Order, Food and Shelter, Job Creation, Migration, Financial Wellbeing, Personal Health, Civic Engagement, and Evaluative Wellbeing and demonstrates their correlations with world development indicators such as GDP and Brain Gain. These indicators assist leaders in understanding the broad context of national interests and establishing organization-specific correlations between leading indexes and lagging economic outcomes.
Gallup organizes its core group of indicators into the Gallup World Path. The Path is an organizational conceptualization of the seven indexes and is not to be construed as a causal model. The individual indexes have many properties of a strong theoretical framework. A more in-depth description of the questions and Gallup indexes is included in the indexes section of this document. In addition to World Path indexes, Gallup Worldwide Research questions also measure opinions about national institutions, corruption, youth development, community basics, diversity, optimism, communications, religiosity, and numerous other topics. For many regions of the world, additional questions that are specific to that region or country are included in surveys. Region-specific questions have been developed for predominantly Muslim nations, former Soviet Union countries, the Balkans, sub-Saharan Africa, Latin America, China and India, South Asia, and Israel and the Palestinian Territories.
The questionnaire is translated into the major conversational languages of each country. The translation process starts with an English, French, or Spanish version, depending on the region. One of two translation methods may be used.
METHOD 1: Two independent translations are completed. An independent third party, with some knowledge of survey research methods, adjudicates the differences. A professional translator translates the final version back into the source language.
METHOD 2: A translator
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coronavirus disease (COVID-19), caused by the virus SARS-CoV-2, is already responsible for more than 4.3 million confirmed cases and 295,000 deaths worldwide as of May 15, 2020. Ongoing efforts to control the pandemic include the development of peptide-based vaccines and diagnostic tests. In these approaches, HLA allelic diversity plays a crucial role. Despite its importance, current knowledge of HLA allele frequencies in South America is very limited. In this study, we have performed a literature review of datasets reporting HLA frequencies of South American populations, available in scientific literature and/or in the Allele Frequency Net Database. This allowed us to enrich the current scenario with more than 12.8 million data points. As a result, we are presenting updated HLA allelic frequencies based on country, including 91 alleles that were previously thought to have frequencies either under 5% or of an unknown value. Using alleles with an updated frequency of at least ≥5% in any South American country, we predicted epitopes in SARS-CoV-2 proteins using NetMHCpan (I and II) and MHC flurry. Then, the best predicted epitopes (class-I and -II) were selected based on their binding to South American alleles (Coverage Score). Class II predicted epitopes were also filtered based on their three-dimensional exposure. We obtained 14 class-I and four class-II candidate epitopes with experimental evidence (reported in the Immune Epitope Database and Analysis Resource), having good coverage scores for South America. Additionally, we are presenting 13 HLA-I and 30 HLA-II novel candidate epitopes without experimental evidence, including 16 class-II candidates in highly exposed conserved areas of the NTD and RBD regions of the Spike protein. These novel candidates have even better coverage scores for South America than those with experimental evidence. Finally, we show that recent similar studies presenting candidate epitopes also predicted some of our candidates but discarded them in the selection process, resulting in candidates with suboptimal coverage for South America. In conclusion, the candidate epitopes presented provide valuable information for the development of epitope-based strategies against SARS-CoV-2, such as peptide vaccines and diagnostic tests. Additionally, the updated HLA allelic frequencies provide a better representation of South America and may impact different immunogenetic studies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Hill Country Village Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Hill Country Village, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Hill Country Village.
Key observations
Among the Hispanic population in Hill Country Village, regardless of the race, the largest group is of Mexican origin, with a population of 89 (78.07% of the total Hispanic population).
https://i.neilsberg.com/ch/hill-country-village-tx-population-by-race-and-ethnicity.jpeg" alt="Hill Country Village Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hill Country Village Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As in other Latin American populations, Argentinians are the result of the admixture amongst different continental groups, mainly from America and Europe, and to a lesser extent from Sub-Saharan Africa. However, it is known that the admixture processes did not occur homogeneously throughout the country. Therefore, considering the importance for anthropological, medical and forensic researches, this study aimed to investigate the population genetic structure of the Argentinian Patagonia, through the analysis of 46 ancestry informative markers, in 433 individuals from five different localities. Overall, in the Patagonian sample, the average individual ancestry was estimated as 35.8% Native American (95% CI: 32.2–39.4%), 62.1% European (58.5–65.7%) and 2.1% African (1.7–2.4%). Comparing the five localities studied, statistically significant differences were observed for the Native American and European contributions, but not for the African ancestry. The admixture results combined with the genealogical information revealed intra-regional variations that are consistent with the different geographic origin of the participants and their ancestors. As expected, a high European ancestry was observed for donors with four grandparents born in Europe (96.8%) or in the Central region of Argentina (85%). In contrast, the Native American ancestry increased when the four grandparents were born in the North (71%) or in the South (61.9%) regions of the country, or even in Chile (60.5%). In summary, our results showed that differences on continental ancestry contribution have different origins in each region in Patagonia, and even in each locality, highlighting the importance of knowing the origin of the participants and their ancestors for the correct interpretation and contextualization of the genetic information.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
https://www.california-demographics.com/terms_and_conditionshttps://www.california-demographics.com/terms_and_conditions
A dataset listing California counties by population for 2024.
Link to this report's codebookExecutive SummaryThe world is still in the midst of the worst public health crisis in a century. Mobility restriction measures taken to respond to the COVID-19 threat have led to a global economic crisis, with massive job losses and major impacts amounting to a significant setback in the world’s progress towards achieving the SDGs, especially for poor countries and vulnerable population groups. In line with SDG 3 (Good Health and Well-Being), all countries need to strengthen the resilience of their health systems and their disease and pandemic prevention programs. Besides greater investments, the crisis has highlighted the need for better measurement and reporting to track disease and pandemic prevention programs, healthcare system preparedness, and resilience to pandemics.This report presents a special edition of the SDG Index and Dashboards, in which Uruguay is benchmarked against OECD countries using a specific set of SDG indicators available for these countries. Due to time lags in data generation and reporting, however, the SDG Index and Dashboards for Uruguay do not reflect the impact of COVID-19. The projection of country trajectories based on recent progress (business-as-usual scenarios) may therefore not provide a realistic sense of the likely future, as COVID-19 is likely to alter trajectories relating to many SDGs. Nevertheless, the Index and Dashboards remain useful for understanding, goal by goal, the progress of Uruguay compared to these other countries. The SDG data and the Six Transformations Framework presented in this report help to identify the key vulnerabilities and challenges that Uruguay was facing before the COVID-19 crisis and provide a useful framework to inform its long-term recovery from COVID-19.Uruguay ranks 30th of the 39 countries covered in this special edition. Its overall score is, however, above the average for OECD countries in the Latin America and Caribbean region and only slightly below the population-weighted average of OECD countries overall. Uruguay performs well and is showing progress on most of the socio-economic goals (SDGs 1–10) although progress is lagging on SDG 4 (Quality Education), SDG 9 (Industry, Innovation and Infrastructure) and SDG 10 (Reduced Inequalities). As with other OECD countries, and particularly the OECD countries in the Latin America and Caribbean region, further effort is needed to meet goals related to sustainable consumption and production, or to climate and biodiversity (SDGs 12 to 15), and to address governance and security issues covered under SDG 16 (Peace, Justice and Strong Institutions).As part of its commitment to the 2030 Agenda, Uruguay has already submitted four voluntary national reviews to the UN High Level Political Forum: in 2017, 2018, 2019 and 2021. Incorporating exhaustive statistical data, these comprehensive reports show Uruguay’s progress on the 17 SDGs and provide detailed information on regulatory frameworks and specific actions contributing to progress towards each goal. The government’s recent submission of the 2021 voluntary national review, which incorporates the results in this report, presents an opportunity to reinforce Uruguay’s commitment to the 2030 Agenda by defining strategies to address remaining challenges and further accelerate progress.Reliable, relevant and timely information is essential to successfully align national strategies to the SDGs: to identify priorities, mobilize resources, measure results and ensure transparency. Uruguay must encourage and advance the strategic use of data and digital technologies towards improving its policies for sustainable development.Achieving the SDGs requires closing the financing gap. The private sector plays a key role in mobilizing resources for sustained economic growth and contributing to social inclusion and environmental protection. The private sector contributes directly to SDG 12 (Responsible Consumption and Production) and indirectly, through its actions and financing, to the achievement of all 17 SDGs. Uruguay has already started to move in this direction, initiating the country’s first private issuance of green bonds to finance sustainable investment portfolios. Uruguay’s Central Bank has now joined the Network for Greening the Financial System, and the Uruguayan Private Banks Association has established a sustainability committee to accelerate the transition towards sustainable finance in the banking system.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Latin America and the Caribbean Population Time Series data set provides total population estimates using spatially consistent and comparable Units for Latin American municipalities or equivalent administrative Units for the years 1990 and 2000. The data set consists of two vector polygon layers: one layer displays population estimates for subnational administrative Units in 1990 and 2000, including population counts, density, and percent change, at the municipality level or equivalent (level 2); a second layer summarizes this information at the country level (level 0).