https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.
The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.
This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.
Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.
This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.
This dataset (world_population_data.csv
) covering from 1970 up to 2023 includes the following columns:
Column Name | Description |
---|---|
Rank | Rank by Population |
CCA3 | 3 Digit Country/Territories Code |
Country | Name of the Country |
Continent | Name of the Continent |
2023 Population | Population of the Country in the year 2023 |
2022 Population | Population of the Country in the year 2022 |
2020 Population | Population of the Country in the year 2020 |
2015 Population | Population of the Country in the year 2015 |
2010 Population | Population of the Country in the year 2010 |
2000 Population | Population of the Country in the year 2000 |
1990 Population | Population of the Country in the year 1990 |
1980 Population | Population of the Country in the year 1980 |
1970 Population | Population of the Country in the year 1970 |
Area (km²) | Area size of the Country/Territories in square kilometer |
Density (km²) | Population Density per square kilometer |
Growth Rate | Population Growth Rate by Country |
World Population Percentage | The population percentage by each Country |
The primary dataset was retrieved from the World Population Review. I sincerely thank the team for providing the core data used in this dataset.
© Image credit: Freepik
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.
This dataset contains the population distribution by state, gender, sex & region.
The file is in .csv format thus it is accessible everywhere.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Information
The Pop-AUT database was developed for the DISCC-AT project, which required subnational population projections for Austria consistent with the updated Shared Socio-Economic Pathways (SSPs). For this database, the most recent version of the nationwide SSP population projections (IIASA-WiC POP 2023) are spatially downscaled, offering a detailed perspective at the subnational level in Austria. Recognizing the relevance of this information for a wider audience, the data has been made publicly accessible through an interactive dashboard. There, users are invited to explore how the Austrian population is projected to evolve under different SSP scenarios until the end of this century.
Methodology
The downscaling process of the nationwide Shared Socioeconomic Pathways (SSP) population projections is a four-step procedure developed to obtain subnational demographic projections for Austria. In the first step, population potential surfaces for Austria are derived. These indicate the attractiveness of a location in terms of habitability and are obtained using machine learning techniques, specifically random forest models, along with geospatial information such as land use, roads, elevation, distance to cities, and elevation (see, e.g., Wang et al. 2023).
The population potential surfaces play a crucial role in distributing the Austrian population effectively across the country. Calculations are based on the 1×1 km spatial resolution database provided by Wang et al. (2023), covering all SSPs in 5-year intervals from 2020 to 2100.
Moving to the second step, the updated nationwide SSP population projections for Austria (IIASA-WiC POP 2023) are distributed to all 1×1 km grid cells within the country. This distribution is guided by the previously computed grid cell-level population potential surfaces, ensuring a more granular representation of demographic trends.
The base year for all scenarios is 2015, obtained by downscaling the UN World Population Prospects 2015 count for Austria using the WorldPop (2015) 1×1 km population count raster.
In the third step, the 1×1 km population projections are temporally interpolated to obtain yearly projections for all SSP scenarios spanning the period from 2015 to 2100.
The final step involves the spatial aggregation of the gridded SSP-consistent population projections to the administrative levels of provinces (Bundesländer), districts (Bezirke), and municipalities (Gemeinden).
Dashboard
The data can be explored interactively through a dashboard.
Data Inputs
Updated nationwide SSP population projections: IIASA-WiC POP (2023) (https://zenodo.org/records/7921989)
Population potential surfaces: Wang, X., Meng, X., & Long, Y. (2022). Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Scientific Data, 9(1), 563.
Shapefiles: data.gv.at
WorldPop 2015: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647
Version
This is version 1.0, built upon the Review-Phase 2 version of the updated nationwide SSP population projections (IIASA-WiC POP 2023). Once these projections are revised, this dataset will be accordingly updated.
File Organization
The SSP-consistent population projections for Austria are accessible in two formats: .csv files for administrative units (provinces = Bundesländer, districts = Politische Bezirke, municipalities = Gemeinden) and 1×1 km raster files in GeoTIFF and NetCDF formats. All files encompass annual population counts spanning from 2015 to 2100.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Rural Access Index (RAI) is a measure of access, developed by the World Bank in 2006. It was adopted as Sustainable Development Goal (SDG) indicator 9.1.1 in 2015, to measure the accessibility of rural populations. It is currently the only indicator for the SDGs that directly measures rural access.The RAI measures the proportion of the rural population that lives within 2 km of an all-season road. An all-season road is one that is motorable all year, but may be temporarily unavailable during inclement weather (Roberts, Shyam, & Rastogi, 2006). This dataset implements and expands on the most recent official methodology put forward by the World Bank, ReCAP's 2019 RAI Supplemental Guidelines. This is, to date, the only publicly available application of this method at a global scale.MethodologyReCAP's methodology provided new insight on what makes a road all-season and how this data should be handled: instead of removing unpaved roads from the network, the ones that are classified as unpaved are to be intersected with topographic and climatic conditions and, whenever there’s an overlap with excess precipitation and slope, a multiplying factor ranging from 0% to 100% is applied to the population that would access to that road. This present dataset developed by SDSN's SDG Transformation Centre proposes that authorities ability to maintain and remediate road conditions also be taken into account.Data sourcesThe indicator relies on four major items of geospatial data: land cover (rural or urban), population distribution, road network extent and the “all-season” status of those roads.Land cover data (urban/rural distinction)Since the indicator measures the acess rural populations, it's necessary to define what is and what isn't rural. This dataset uses the DegUrba Methodology, proposed by the United Nations Expert Group on Statistical Methodology for Delineating Cities and Rural Areas (United Nations Expert Group, 2019). This approach has been developed by the European Commission Global Human Settlement Layer (GHSL-SMOD) project, and is designed to instil some consistency into the definitions based on population density on a 1-km grid, but adjusted for local situations.Population distributionThe source for population distribution data is WorldPop. This uses national census data, projections and other ancillary data from countries to produce aggregated, 100 m2 population data. Road extentTwo widely recognized road datasets are used: the real-time updated crowd-sourced OpenStreetMap (OSM) or the GLOBIO’s 2018 GRIP database, which draws data from official national sources. The reasons for picking the latter are mostly related to its ability to provide information on the surface (pavement) of these roads, to the detriment of the timeliness of the data, which is restrained to the year 2018. Additionally, data from Microsoft Bing's recent Road Detection project is used to ensure completeness. This dataset is completely derived from machine learning methods applied over satellite imagery, and detected 1,165 km of roads missing from OSM.Roads’ all-season statusThe World Bank's original 2006 methodology defines the term all-season as “… a road that is motorable all year round by the prevailing means of rural transport, allowing for occasional interruptions of short duration”. ReCAP's 2019 methodology makes a case for passability equating to the all-season status of a road, along with the assumption that typically the wet season is when roads become impassable, especially so in steep roads that are more exposed to landslides.This dataset follows the ReCAP methodology by creating an passability index. The proposed use of passability factors relies on the following three aspects:• Surface type. Many rural roads in LICs (and even in large high-income countries including the USA and Australia) are unpaved. As mentioned before, unpaved roads deteriorate rapidly and in a different way to paved roads. They are very susceptible to water ingress to the surface, which softens the materials and makes them very vulnerable to the action of traffic. So, when a road surface becomes saturated and is subject to traffic, the deterioration is accelerated. • Climate. Precipitation has a significant effect on the condition of a road, especially on unpaved roads, which predominate in LICs and provide much of the extended connectivity to rural and poor areas. As mentioned above, the rainfall on a road is a significant factor in its deterioration, but the extent depends on the type of rainfall in terms of duration and intensity, and how well the roadside drainage copes with this. While ReCAP suggested the use of general climate zones, we argue that better spatial and temporal resolutions can be acquired through the Copernicus Programme precipitation data, which is made available freely at ~30km pixel size for each month of the year.• Terrain. The gradient and altitude of roads also has an effect on their accessibility. Steep roads become impassable more easily due to the potential for scour during heavy rainfall, and also due to slipperiness as a result of the road surface materials used. Here this is drawn from slope calculated from SRTM Digital Terrain data.• Road maintenance. The ability of local authorities to remediate damaged caused by precipitation and landslides is proposed as a correcting factor to the previous ones. Ideally this would be measured by the % of GDP invested in road construction and maintenance, but this isn't available for all countries. For this reason, GDP per capita is adopted as a proxy instead. The data range is normalized in such a way that a road maxed out in terms of precipitation and slope (accessibility score of 0.25) in a country at the top of the GDP per capita range is brought back at to the higher end of the accessibility score (0.95), while the accessibility score of a road meeting the same passability conditions in a country which GDP per capita is towards the lower end is kept unchanged.Data processingThe roads from the three aforementioned datasets (Bing, GRIP and OSM) are merged together to them is applied a 2km buffer. The populations falling exclusively on unpaved road buffers are multiplied by the resulting passability index, which is defined as the normalized sum of the aforementioned components, ranging from 0.25 to. 0.9, with 0.95 meaning 95% probability that the road is all-season. The index applied to the population data, so, when calculated, the RAI includes the probability that the roads which people are using in each area will be all-season or not. For example, an unpaved road in a flat area with low rainfall would have an accessibility factor of 0.95, as this road is designed to be accessible all year round and the environmental effects on its impassability are minimal.The code for generating this dataset is available on Github at: https://github.com/sdsna/rai
https://datacatalog1.worldbank.org/public-licenses?fragment=cchttps://datacatalog1.worldbank.org/public-licenses?fragment=cc
National statistical systems are facing significant challenges. These challenges arise from increasing demands for high quality and trustworthy data to guide decision making, coupled with the rapidly changing landscape of the data revolution. To help create a mechanism for learning amongst national statistical systems, the World Bank has developed improved Statistical Performance Indicators (SPI) to monitor the statistical performance of countries. The SPI focuses on five key dimensions of a country’s statistical performance: (i) data use, (ii) data services, (iii) data products, (iv) data sources, and (v) data infrastructure. This will replace the Statistical Capacity Index (SCI) that the World Bank has regularly published since 2004.
The SPI focus on five key pillars of a country’s statistical performance: (i) data use, (ii) data services, (iii) data products, (iv) data sources, and (v) data infrastructure. The SPI are composed of more than 50 indicators and contain data for 186 countries. This set of countries covers 99 percent of the world population. The data extend from 2016-2023, with some indicators going back to 2004.
For more information, consult the academic article published in the journal Scientific Data. https://www.nature.com/articles/s41597-023-01971-0.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multidimensional Poverty Headcount Ratio: World Bank: % of total population data was reported at 2.100 % in 2023. This records a decrease from the previous number of 2.600 % for 2022. Multidimensional Poverty Headcount Ratio: World Bank: % of total population data is updated yearly, averaging 5.500 % from Dec 2009 (Median) to 2023, with 13 observations. The data reached an all-time high of 21.300 % in 2009 and a record low of 2.100 % in 2023. Multidimensional Poverty Headcount Ratio: World Bank: % of total population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Indonesia – Table ID.World Bank.WDI: Social: Poverty and Inequality. The multidimensional poverty headcount ratio (World Bank) is the percentage of a population living in poverty according to the World Bank's Multidimensional Poverty Measure. The Multidimensional Poverty Measure includes three dimensions – monetary poverty, education, and basic infrastructure services – to capture a more complete picture of poverty.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Global Economic, Environmental, Health, and Social indicators Ready for Analysis
This comprehensive dataset merges global economic, environmental, technological, and human development indicators from 2000 to 2020. Sourced and transformed from multiple public datasets via Google BigQuery, it is designed for advanced exploratory data analysis, machine learning, policy modeling, and sustainability research.
Curated by combining and transforming data from the Google BigQuery Public Data program, this dataset offers a harmonized view of global development across more than 40 key indicators spanning over two decades (2000–2020). It supports research across multiple domains such as:
Includes calculated features:
years_since_2000
years_since_century
is_pandemic_period
(binary indicator for pandemic periods)Economic Indicators:
Environmental Indicators:
Technology & Connectivity:
Health & Education:
Governance & Resilience:
Approximately 18% of the entries in the region
and income_group
columns are null. This is primarily due to the inclusion of aggregate regions (e.g., Arab World, East Asia & Pacific, Africa Eastern and Southern) and non-country classifications (e.g., Early-demographic dividend, Central Europe and the Baltics). These entries represent groups of countries with diverse income levels and geographic characteristics, making it inappropriate or misleading to assign a single region or income classification. In some cases, the data source may have intentionally left these fields blank to avoid oversimplification or due to a lack of standardized classification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data was reported at 7.650 Intl $/Day in 2023. This records an increase from the previous number of 6.970 Intl $/Day for 2018. ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data is updated yearly, averaging 7.310 Intl $/Day from Dec 2018 (Median) to 2023, with 2 observations. The data reached an all-time high of 7.650 Intl $/Day in 2023 and a record low of 6.970 Intl $/Day in 2018. ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Indonesia – Table ID.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) used in calculating the growth rate in the welfare aggregate of total population.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poverty Headcount Ratio at Societal Poverty Lines: % of Population data was reported at 23.600 % in 2023. This records a decrease from the previous number of 24.600 % for 2022. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data is updated yearly, averaging 37.300 % from Dec 1984 (Median) to 2023, with 31 observations. The data reached an all-time high of 74.600 % in 1987 and a record low of 23.600 % in 2023. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Indonesia – Table ID.World Bank.WDI: Social: Poverty and Inequality. The poverty headcount ratio at societal poverty line is the percentage of a population living in poverty according to the World Bank's Societal Poverty Line. The Societal Poverty Line is expressed in purchasing power adjusted 2017 U.S. dollars and defined as max($2.15, $1.15 + 0.5*Median). This means that when the national median is sufficiently low, the Societal Poverty line is equivalent to the extreme poverty line, $2.15. For countries with a sufficiently high national median, the Societal Poverty Line grows as countries’ median income grows.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
Tibet was excluded from the sample. The excluded areas represent less than 1 percent of the total population of China.
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for China is 3500.
Mobile telephone
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
National coverage
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for South Africa is 1014.
Face-to-face [f2f]
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bosnia and Herzegovina BA: Employment To Population Ratio: National Estimate: Aged 15+: Female data was reported at 36.768 % in 2023. This records an increase from the previous number of 34.762 % for 2022. Bosnia and Herzegovina BA: Employment To Population Ratio: National Estimate: Aged 15+: Female data is updated yearly, averaging 23.164 % from Dec 2001 (Median) to 2023, with 19 observations. The data reached an all-time high of 36.768 % in 2023 and a record low of 19.950 % in 2006. Bosnia and Herzegovina BA: Employment To Population Ratio: National Estimate: Aged 15+: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bosnia and Herzegovina – Table BA.World Bank.WDI: Employment and Unemployment. Employment to population ratio is the proportion of a country's population that is employed. Employment is defined as persons of working age who, during a short reference period, were engaged in any activity to produce goods or provide services for pay or profit, whether at work during the reference period (i.e. who worked in a job for at least one hour) or not at work due to temporary absence from a job, or to working-time arrangements. Ages 15 and older are generally considered the working-age population.;International Labour Organization. “Labour Force Statistics database (LFS)” ILOSTAT. Accessed January 07, 2025. https://ilostat.ilo.org/data/.;Weighted average;The series for ILO estimates is also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Panama PA: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: 2017 PPP per day data was reported at 9.100 Intl $/Day in 2023. This records a decrease from the previous number of 9.580 Intl $/Day for 2018. Panama PA: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: 2017 PPP per day data is updated yearly, averaging 9.340 Intl $/Day from Dec 2018 (Median) to 2023, with 2 observations. The data reached an all-time high of 9.580 Intl $/Day in 2018 and a record low of 9.100 Intl $/Day in 2023. Panama PA: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Panama – Table PA.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) of the bottom 40%, used in calculating the growth rate in the welfare aggregate of the bottom 40% of the population in the income distribution in a country.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bolivia BO: Employment To Population Ratio: National Estimate: Aged 15-24: Female data was reported at 53.415 % in 2023. This records an increase from the previous number of 53.244 % for 2022. Bolivia BO: Employment To Population Ratio: National Estimate: Aged 15-24: Female data is updated yearly, averaging 40.538 % from Dec 1990 (Median) to 2023, with 20 observations. The data reached an all-time high of 53.415 % in 2023 and a record low of 30.107 % in 1990. Bolivia BO: Employment To Population Ratio: National Estimate: Aged 15-24: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bolivia – Table BO.World Bank.WDI: Employment and Unemployment. Employment to population ratio is the proportion of a country's population that is employed. Employment is defined as persons of working age who, during a short reference period, were engaged in any activity to produce goods or provide services for pay or profit, whether at work during the reference period (i.e. who worked in a job for at least one hour) or not at work due to temporary absence from a job, or to working-time arrangements. Ages 15-24 are generally considered the youth population.;International Labour Organization. “Labour Force Statistics database (LFS)” ILOSTAT. Accessed January 07, 2025. https://ilostat.ilo.org/data/.;Weighted average;The series for ILO estimates is also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
Finland was ranked the happiest country in the world, according to the World Happiness Report from 2025. The Nordic country scored 7.74 on a scale from 0 to 10. Two other Nordic countries, Denmark and Iceland, followed in second and third place, respectively. The World Happiness Report is a landmark survey of the state of global happiness that ranks countries by how happy their citizens perceive themselves to be. Criticism The index has received criticism from different perspectives. Some argue that it is impossible to measure general happiness in a country. Others argue that the index places too much emphasis on material well-being as well as freedom from oppression. As a result, the Happy Planet Index was introduced, which takes life expectancy, experienced well-being, inequality of outcomes, and ecological footprint into account. Here, Costa Rica was ranked as the happiest country in the world. Afghanistan is the least happy country Nevertheless, most people agree that high levels of poverty, lack of access to food and water, as well as a prevalence of conflict are factors hindering public happiness. Hence, it comes as no surprise that Afghanistan was ranked as the least happy country in the world in 2024. The South Asian country is ridden by poverty and undernourishment, and topped the Global Terrorism Index in 2024.
Switzerland is leading the ranking by population share with mobile internet access , recording 95.06 percent. Following closely behind is Ukraine with 95.06 percent, while Moldova is trailing the ranking with 46.83 percent, resulting in a difference of 48.23 percentage points to the ranking leader, Switzerland. The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.
The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.
This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.
Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.
This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.
This dataset (world_population_data.csv
) covering from 1970 up to 2023 includes the following columns:
Column Name | Description |
---|---|
Rank | Rank by Population |
CCA3 | 3 Digit Country/Territories Code |
Country | Name of the Country |
Continent | Name of the Continent |
2023 Population | Population of the Country in the year 2023 |
2022 Population | Population of the Country in the year 2022 |
2020 Population | Population of the Country in the year 2020 |
2015 Population | Population of the Country in the year 2015 |
2010 Population | Population of the Country in the year 2010 |
2000 Population | Population of the Country in the year 2000 |
1990 Population | Population of the Country in the year 1990 |
1980 Population | Population of the Country in the year 1980 |
1970 Population | Population of the Country in the year 1970 |
Area (km²) | Area size of the Country/Territories in square kilometer |
Density (km²) | Population Density per square kilometer |
Growth Rate | Population Growth Rate by Country |
World Population Percentage | The population percentage by each Country |
The primary dataset was retrieved from the World Population Review. I sincerely thank the team for providing the core data used in this dataset.
© Image credit: Freepik