94 datasets found
  1. Most important health issues facing the U.S. according to U.S. adults 2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most important health issues facing the U.S. according to U.S. adults 2025 [Dataset]. https://www.statista.com/statistics/986209/most-important-health-issues-facing-america-us/
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2019 - Jan 2024
    Area covered
    United States
    Description

    According to the data from 2025, some 16 percent of respondents said that rising health care costs were the most important health issue facing the United States. Cancer ranked second on the list with 15 percent. Issues with healthcare costsCurrently, the most urgent problem facing American healthcare is the high costs of care. The high expense of healthcare may deter people from getting the appropriate treatment when they need medical care or cause them to completely forego preventative care visits. Many Americans reported that they may skip prescription doses or refrain from taking medication as prescribed due to financial concerns. Such health-related behavior can result in major health problems, which may raise the long-term cost of care. Inflation, medical debt, and unforeseen medical expenses have all added to the burden that health costs are placing on household income. Gun violence issueThe gun violence epidemic has plagued the United States over the past few years, yet very little has been done to address the issue. In recent years, gun violence has become the leading cause of death among American children and teens. Even though more than half of Americans are in favor of tougher gun control regulations, there is little political will to strongly reform the current gun law. Gun violence has a deep traumatic impact on survivors and society, it is developing into a major public health crisis in the United States.

  2. Population Health (BRFSS: HRQOL)

    • kaggle.com
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Population Health (BRFSS: HRQOL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlock-population-health-needs-with-brfss-hrqol
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 14, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Population Health (BRFSS: HRQOL)

    Examining Trends, Disparities and Determinants of Health in the US Population

    By Health [source]

    About this dataset

    The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.

    The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.

    Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.

    Research Ideas

    • Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
    • Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
    • Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...

  3. d

    Public Health Official Departures

    • data.world
    csv, zip
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2022). Public Health Official Departures [Dataset]. https://data.world/associatedpress/public-health-official-departures
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 7, 2022
    Authors
    The Associated Press
    Description

    Changelog:

    Update September 20, 2021: Data and overview updated to reflect data used in the September 15 story Over Half of States Have Rolled Back Public Health Powers in Pandemic. It includes 303 state or local public health leaders who resigned, retired or were fired between April 1, 2020 and Sept. 12, 2021. Previous versions of this dataset reflected data used in the Dec. 2020 and April 2021 stories.

    Overview

    Across the U.S., state and local public health officials have found themselves at the center of a political storm as they combat the worst pandemic in a century. Amid a fractured federal response, the usually invisible army of workers charged with preventing the spread of infectious disease has become a public punching bag.

    In the midst of the coronavirus pandemic, at least 303 state or local public health leaders in 41 states have resigned, retired or been fired since April 1, 2020, according to an ongoing investigation by The Associated Press and KHN.

    According to experts, that is the largest exodus of public health leaders in American history.

    Many left due to political blowback or pandemic pressure, as they became the target of groups that have coalesced around a common goal — fighting and even threatening officials over mask orders and well-established public health activities like quarantines and contact tracing. Some left to take higher profile positions, or due to health concerns. Others were fired for poor performance. Dozens retired. An untold number of lower level staffers have also left.

    The result is a further erosion of the nation’s already fragile public health infrastructure, which KHN and the AP documented beginning in 2020 in the Underfunded and Under Threat project.

    Findings

    The AP and KHN found that:

    • One in five Americans live in a community that has lost its local public health department leader during the pandemic
    • Top public health officials in 28 states have left state-level departments ## Using this data To filter for data specific to your state, use this query

    To get total numbers of exits by state, broken down by state and local departments, use this query

    Methodology

    KHN and AP counted how many state and local public health leaders have left their jobs between April 1, 2020 and Sept. 12, 2021.

    The government tasks public health workers with improving the health of the general population, through their work to encourage healthy living and prevent infectious disease. To that end, public health officials do everything from inspecting water and food safety to testing the nation’s babies for metabolic diseases and contact tracing cases of syphilis.

    Many parts of the country have a health officer and a health director/administrator by statute. The analysis counted both of those positions if they existed. For state-level departments, the count tracks people in the top and second-highest-ranking job.

    The analysis includes exits of top department officials regardless of reason, because no matter the reason, each left a vacancy at the top of a health agency during the pandemic. Reasons for departures include political pressure, health concerns and poor performance. Others left to take higher profile positions or to retire. Some departments had multiple top officials exit over the course of the pandemic; each is included in the analysis.

    Reporters compiled the exit list by reaching out to public health associations and experts in every state and interviewing hundreds of public health employees. They also received information from the National Association of City and County Health Officials, and combed news reports and records.

    Public health departments can be found at multiple levels of government. Each state has a department that handles these tasks, but most states also have local departments that either operate under local or state control. The population served by each local health department is calculated using the U.S. Census Bureau 2019 Population Estimates based on each department’s jurisdiction.

    KHN and the AP have worked since the spring on a series of stories documenting the funding, staffing and problems around public health. A previous data distribution detailed a decade's worth of cuts to state and local spending and staffing on public health. That data can be found here.

    Attribution

    Findings and the data should be cited as: "According to a KHN and Associated Press report."

    Is Data Missing?

    If you know of a public health official in your state or area who has left that position between April 1, 2020 and Sept. 12, 2021 and isn't currently in our dataset, please contact authors Anna Maria Barry-Jester annab@kff.org, Hannah Recht hrecht@kff.org, Michelle Smith mrsmith@ap.org and Lauren Weber laurenw@kff.org.

  4. PLACES: Local Data for Better Health, ZCTA Data 2024 release

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Local Data for Better Health, ZCTA Data 2024 release [Dataset]. https://catalog.data.gov/dataset/places-local-data-for-better-health-zcta-data-2020-release-ea5f2
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 40 measures: 12 for health outcomes, 7 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, 3 for health status, and 7 for health-related scocial needs. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population data, and American Community Survey 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.

  5. United States COVID-19 Community Levels by County

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). United States COVID-19 Community Levels by County [Dataset]. https://data.virginia.gov/dataset/united-states-covid-19-community-levels-by-county
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials t

  6. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +2more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  7. U

    US Health Information Exchange Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Dec 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2024). US Health Information Exchange Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/us-health-information-exchange-industry-9426
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Dec 17, 2024
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the US Health Information Exchange Industry market was valued at USD 0.66 Million in 2023 and is projected to reach USD 1.47 Million by 2032, with an expected CAGR of 12.12% during the forecast period. The U.S. HIE market has been enjoying a robust growth trajectory for years now and has received substantial impetus due to the requirements to improve care and outcome, occasioned by rising demand for healthcare providers to have their requirements of liquid sharing of data. HIE enables the electronic exchange of health information across various organizations and systems. This enables them to have broad access to patient information by healthcare professionals and reduces redundancies while enhancing care coordination. Key drivers in the market are driven by governments pushing interoperability and the use of EHRs seen within the 21st Century Cures Act, underlining the improvement of shared data. More attention is paid to value-based care models and population health management for health providers involved in better decision-making and improving patient care through HIE solutions. The geographic regions further illustrate an extensive array of public and private HIEs throughout the US; the fact that significant investment is occurring within both the public and private sectors speaks to the rapidly evolving market. Increased emphasis on advanced technologies such as cloud computing, artificial intelligence, and blockchain is being given to enable security and interoperability improvements for data systems as more healthcare organizations become conscious of the need for interconnected systems. Actually, the U.S. health information exchange industry is better poised to continue its growth in and around the future of healthcare delivery, one that is changing and further becoming efficient by its integration of collaboration among healthcare stakeholders. Recent developments include: In October 2022, Mpowered Health launched its xChange, the United States consumer-mediated healthcare data exchange. The exchange enables health plans, health systems, and other healthcare organizations to request and obtain medical records from consumers with their consent., In March 2022, mpro5 Inc announced its launch into the United States market with a strategy of enabling the collection and leverage of real-time data to simplify the most complex operational challenges in healthcare and hospitals.. Key drivers for this market are: Increasing Demand for Electronic Health Records Resulting in the Expansion of the Market, Government Support via Various Programs and Incentives; Reduction in Healthcare Cost and Improved Efficacy. Potential restraints include: Huge Initial Infrastructural Investment and Slow Return on Investment, Data Privacy and Security Concerns. Notable trends are: The Decentralized/Federated Model is Expected to Hold a Notable Market Share Over the Forecast Period.

  8. Big Data Analytics in Healthcare Market Report | Global Forecast From 2025...

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Big Data Analytics in Healthcare Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/big-data-analytics-in-healthcare-market-report
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Analytics in Healthcare Market Outlook



    The global market size for Big Data Analytics in Healthcare was valued at approximately USD 34 billion in 2023 and is anticipated to grow at a robust CAGR of 11.9%, reaching an estimated USD 90 billion by 2032. This remarkable growth is driven by the increasing adoption of data-driven decision-making processes within the healthcare sector, spurred by the mounting pressure to enhance operational efficiencies, improve patient outcomes, and reduce overall healthcare costs. The integration of big data analytics within healthcare systems is enabling organizations to leverage vast amounts of data, leading to enhanced patient care and streamlined operations.



    A significant growth factor fueling the expansion of the big data analytics market in healthcare is the ever-increasing volume of data generated by healthcare systems. With the surge of electronic health records, wearable health devices, and various other digital health technologies, the volume of data being generated is unprecedented. This data, if analyzed correctly, holds the potential to transform healthcare delivery models, allowing for more precise diagnostics, personalized treatment plans, and proactive disease management strategies. Consequently, healthcare organizations are increasingly investing in big data analytics tools to harness this data for clinical and operational improvements.



    Another key driver of market growth is the growing emphasis on value-based care and the need for healthcare providers to demonstrate high-quality patient outcomes. Value-based care models require providers to focus on the quality rather than the quantity of care delivered, inherently demanding the use of advanced analytics to derive actionable insights from patient data. Big data analytics facilitates the identification of patterns and trends that can lead to improved treatment effectiveness and patient satisfaction. This shift in care models is prompting healthcare organizations to integrate sophisticated analytics solutions that help in predictive modeling, trend analysis, and real-time decision-making, further propelling market expansion.



    Additionally, the increasing incidence of chronic diseases worldwide is driving the need for more efficient healthcare services. Big data analytics in healthcare can play a critical role in managing chronic diseases by enabling preventive care and personalized treatment plans. By analyzing patient data, including historical health records, genetic information, and lifestyle choices, healthcare providers can predict potential health issues and intervene early, thereby improving patient outcomes and reducing healthcare costs. This capability is essential in managing the global burden of chronic diseases, thereby boosting the adoption of big data analytics solutions in the healthcare sector.



    Regionally, North America dominates the market due to the presence of advanced healthcare infrastructure, the availability of technologically advanced products, and the high adoption rate of healthcare IT solutions. The region's robust regulatory environment and substantial investments in healthcare IT make it a fertile ground for the growth of big data analytics solutions. However, the Asia Pacific region is expected to exhibit the highest growth rate during the forecast period, driven by increasing government initiatives supporting the digitization of healthcare, burgeoning healthcare infrastructure, and a growing focus on precision medicine. The integration of big data analytics in healthcare across diverse regions is indicative of its global importance in optimizing healthcare delivery and patient care.



    Component Analysis



    In the realm of big data analytics in healthcare, the component segment is vitally instrumental to the market's evolution and includes software and services. Software solutions are the backbone of big data analytics, providing healthcare organizations with the necessary tools to collect, process, and analyze vast datasets. These solutions encompass data management and analytical platforms, which are indispensable for extracting actionable insights from disparate data sources. The software component is continually evolving with advancements in artificial intelligence and machine learning, which enhance data analytics capabilities. Moreover, the increasing demand for user-friendly, customizable software solutions is driving innovation and growth within this segment.



    The services component, on the other hand, plays a critical role in the implementation and maintenance of big data analytics solutions. This component includes cons

  9. Sources of breached healthcare data in the U.S. 2023

    • ai-chatbox.pro
    • statista.com
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ani Petrosyan (2024). Sources of breached healthcare data in the U.S. 2023 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F8795%2Fhealthcare-and-cyber-security-in-the-us%2F%23XgboD02vawLbpWJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Ani Petrosyan
    Area covered
    United States
    Description

    A 2023 report on data breaches in the healthcare system in the United States revealed that in most incidents, the leaked data was located in the network server, with almost 70 percent of data breaches indicating this location. The second-most common location of breached data was e-mail, with over 18 percent of the cases, followed by paper or films, with nearly six percent of the cases.

  10. Reduced Access to Care During COVID-19

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Reduced Access to Care During COVID-19 [Dataset]. https://catalog.data.gov/dataset/reduced-access-to-care-during-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations

  11. US Population Health Management (PHM) Market Analysis - Size and Forecast...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). US Population Health Management (PHM) Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-population-health-management-market-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States
    Description

    Snapshot img

    US Population Health Management (PHM) Market Size 2025-2029

    The us population health management (phm) market size is forecast to increase by USD 6.04 billion at a CAGR of 7.4% between 2024 and 2029.

    The Population Health Management (PHM) market in the US is experiencing significant growth, driven by the increasing adoption of healthcare IT solutions and analytics. These technologies enable healthcare providers to collect, analyze, and act on patient data to improve health outcomes and reduce costs. However, the high perceived costs associated with PHM solutions pose a challenge for some organizations, limiting their ability to fully implement and optimize these technologies. Despite this obstacle, the potential benefits of PHM, including improved patient care and population health, make it a strategic priority for many healthcare organizations. To capitalize on this opportunity, companies must focus on cost-effective solutions and innovative approaches to addressing the challenges of PHM implementation and optimization. By leveraging advanced analytics, cloud technologies, and strategic partnerships, organizations can overcome cost barriers and deliver better care to their patient populations.

    What will be the size of the US Population Health Management (PHM) Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The Population Health Management (PHM) market in the US is experiencing significant advancements, integrating various elements to improve patient outcomes and reduce healthcare costs. Public health surveillance and data governance ensure accurate population health data, enabling healthcare leaders to identify health disparities and target interventions. Quality measures and health literacy initiatives promote transparency and patient activation, while data visualization and business intelligence facilitate data-driven decision-making. Behavioral health integration, substance abuse treatment, and mental health services address the growing need for holistic care, and outcome-based contracts incentivize providers to focus on patient outcomes. Health communication, community health workers, and patient portals enhance patient engagement, while wearable devices and mHealth technologies provide real-time data for personalized care plans. Precision medicine and predictive modeling leverage advanced analytics to tailor treatment approaches, and social service integration addresses the social determinants of health. Health data management, data storytelling, and healthcare innovation continue to drive market growth, transforming the industry and improving overall population health.

    How is this market segmented?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareServicesDeploymentCloudOn-premisesEnd-userHealthcare providersHealthcare payersEmployers and government bodiesGeographyNorth AmericaUS

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.

    Population Health Management (PHM) software in the US gathers patient data from healthcare systems and utilizes advanced analytics tools, including data visualization and business intelligence, to predict health conditions and improve patient care. PHM software aims to enhance healthcare efficiency, reduce costs, and ensure quality patient care. By analyzing accurate patient data, PHM software enables the identification of community health risks, leading to proactive interventions and better health outcomes. The adoption of PHM software is on the rise in the US due to the growing emphasis on value-based care and the increasing prevalence of chronic diseases. Machine learning, artificial intelligence, and predictive analytics are integral components of PHM software, enabling healthcare payers to develop personalized care plans and improve care coordination. Data integration and interoperability facilitate seamless data sharing among various healthcare stakeholders, while data visualization tools help in making informed decisions. Public health agencies and healthcare providers leverage PHM software for population health research, disease management programs, and quality improvement initiatives. Cloud computing and data warehousing provide the necessary infrastructure for storing and managing large volumes of population health data. Healthcare regulations mandate the adoption of PHM software to ensure compliance with data privacy and security standards. PHM software also supports care management services, patient engagement platforms, and remote patient monitoring, empowering patients

  12. z

    Counts of Influenza reported in UNITED STATES OF AMERICA: 1919-1951

    • zenodo.org
    json, xml, zip
    Updated Jun 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke (2024). Counts of Influenza reported in UNITED STATES OF AMERICA: 1919-1951 [Dataset]. http://doi.org/10.25337/t7/ptycho.v2.0/us.6142004
    Explore at:
    json, xml, zipAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    Project Tycho
    Authors
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 26, 1919 - Dec 8, 1951
    Area covered
    United States
    Description

    Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.

    Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.

    Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:

    • Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported.
    • Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".

  13. M

    Big Data In Healthcare Market Reaching US$ 145.8 Billion By 2033

    • media.market.us
    Updated Oct 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2024). Big Data In Healthcare Market Reaching US$ 145.8 Billion By 2033 [Dataset]. https://media.market.us/big-data-in-healthcare-market-news/
    Explore at:
    Dataset updated
    Oct 30, 2024
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Global Big Data in Healthcare Market size is expected to be worth around USD 145.8 Billion by 2033 from USD 42.2 Billion in 2023, growing at a CAGR of 13.2% during the forecast period from 2024 to 2033.

    Big data in healthcare encompasses vast amounts of diverse, unstructured data sourced from medical journals, biometric sensors, electronic medical records (EMRs), Internet of Medical Things (IoMT), social media platforms, payer records, omics research, and data repositories. Integrating this unstructured data into traditional systems presents considerable challenges, primarily in data structuring and standardization. Effective data structuring is essential for ensuring compatibility across systems and enabling robust analytical processes.

    However, advancements in big data analytics, artificial intelligence, and machine learning have significantly enhanced the ability to convert complex healthcare data into actionable insights. These advancements have transformed healthcare, driving informed decision-making, enabling early and accurate diagnostics, facilitating precision medicine, and enhancing patient engagement through digital self-service platforms, including online portals, mobile applications, and wearable health devices.

    The role of big data in pharmaceutical R&D has become increasingly central, as analytics tools streamline drug discovery, accelerate clinical trial processes, and identify potential therapeutic targets more efficiently. The demand for business intelligence solutions within healthcare is rising, fueled by the surge of unstructured data and the focus on developing tailored treatment protocols. As a result, the global market for big data in healthcare is projected to grow steadily during the forecast period.

    https://market.us/wp-content/uploads/2024/08/Big-Data-in-Healthcare-Market-Size.jpg" alt="Big Data in Healthcare Market Size" class="wp-image-125297">

  14. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  15. C

    Public Health Statistics - Selected public health indicators by Chicago...

    • data.cityofchicago.org
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Illinois Department of Public Health (IDPH) and U.S. Census Bureau (2013). Public Health Statistics - Selected public health indicators by Chicago community area - Historical [Dataset]. https://data.cityofchicago.org/Health-Human-Services/Public-Health-Statistics-Selected-public-health-in/iqnk-2tcu
    Explore at:
    csv, application/rdfxml, application/rssxml, json, tsv, xmlAvailable download formats
    Dataset updated
    May 30, 2013
    Dataset authored and provided by
    Illinois Department of Public Health (IDPH) and U.S. Census Bureau
    Area covered
    Chicago
    Description

    Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.

    This dataset contains a selection of 27 indicators of public health significance by Chicago community area, with the most updated information available. The indicators are rates, percents, or other measures related to natality, mortality, infectious disease, lead poisoning, and economic status. See the full description at https://data.cityofchicago.org/api/assets/2107948F-357D-4ED7-ACC2-2E9266BBFFA2.

  16. Challenges to health data sharing in the U.S. in 2020, by payers and...

    • statista.com
    Updated Jul 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Challenges to health data sharing in the U.S. in 2020, by payers and providers [Dataset]. https://www.statista.com/statistics/1314771/barriers-to-health-data-sharing-in-the-us-by-healthcare-actor/
    Explore at:
    Dataset updated
    Jul 5, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, 54 percent of healthcare providers and 50 percent of healthcare payers surveyed in the United States indicated that lack of technical interoperability was the biggest challenge around health data sharing. Among 52 percent of providers, noted that timeliness of data that is shared was a challenge, in comparison only 21 percent of payers shared the same concern.

  17. Number of data compromises in the U.S. healthcare sector 2005-2023

    • statista.com
    • ai-chatbox.pro
    Updated Nov 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of data compromises in the U.S. healthcare sector 2005-2023 [Dataset]. https://www.statista.com/statistics/798417/health-and-medical-data-compromises-united-states/
    Explore at:
    Dataset updated
    Nov 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, there were more than 809 incidents of data compromises in the healthcare sector in the United States. Reaching its all-time highest. This indicates a significant growth since 2005 when the industry saw only 16 cases of data compromises in the country.

  18. US Healthcare Readmissions and Mortality

    • kaggle.com
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Healthcare Readmissions and Mortality [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-healthcare-readmissions-and-mortality/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Healthcare Readmissions and Mortality

    Evaluating Hospital Performance

    By Health [source]

    About this dataset

    This dataset contains detailed information about 30-day readmission and mortality rates of U.S. hospitals. It is an essential tool for stakeholders aiming to identify opportunities for improving healthcare quality and performance across the country. Providers benefit by having access to comprehensive data regarding readmission, mortality rate, score, measure start/end dates, compared average to national as well as other pertinent metrics like zip codes, phone numbers and county names. Use this data set to conduct evaluations of how hospitals are meeting industry standards from a quality and outcomes perspective in order to make more informed decisions when designing patient care strategies and policies

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides data on 30-day readmission and mortality rates of U.S. hospitals, useful in understanding the quality of healthcare being provided. This data can provide insight into the effectiveness of treatments, patient care, and staff performance at different healthcare facilities throughout the country.

    In order to use this dataset effectively, it is important to understand each column and how best to interpret them. The ‘Hospital Name’ column displays the name of the facility; ‘Address’ lists a street address for the hospital; ‘City’ indicates its geographic location; ‘State’ specifies a two-letter abbreviation for that state; ‘ZIP Code’ provides each facility's 5 digit zip code address; 'County Name' specifies what county that particular hospital resides in; 'Phone number' lists a phone contact for any given facility ;'Measure Name' identifies which measure is being recorded (for instance: Elective Delivery Before 39 Weeks); 'Score' value reflects an average score based on patient feedback surveys taken over time frame listed under ' Measure Start Date.' Then there are also columns tracking both lower estimates ('Lower Estimate') as well as higher estimates ('Higher Estimate'); these create variability that can be tracked by researchers seeking further answers or formulating future studies on this topic or field.; Lastly there is one more measure oissociated with this set: ' Footnote,' which may highlight any addional important details pertinent to analysis such as numbers outlying National averages etc..

    This data set can be used by hospitals, research facilities and other interested parties in providing inciteful information when making decisions about patient care standards throughout America . It can help find patterns about readmitis/mortality along county lines or answer questions about preformance fluctuations between different hospital locations over an extended amount of time. So if you are ever curious about 30 days readmitted within US Hospitals don't hesitate to dive into this insightful dataset!

    Research Ideas

    • Comparing hospitals on a regional or national basis to measure the quality of care provided for readmission and mortality rates.
    • Analyzing the effects of technological advancements such as telemedicine, virtual visits, and AI on readmission and mortality rates at different hospitals.
    • Using measures such as Lower Estimate Higher Estimate scores to identify systematic problems in readmissions or mortality rate management at hospitals and informing public health care policy

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: Readmissions_and_Deaths_-_Hospital.csv | Column name | Description | |:-------------------------|:---------------------------------------------------------------------------------------------------| | Hospital Name ...

  19. United States COVID-19 County Level of Community Transmission Historical...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Oct 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2022). United States COVID-19 County Level of Community Transmission Historical Changes - ARCHIVED [Dataset]. https://data.cdc.gov/w/nra9-vzzn/tdwk-ruhb?cur=uFxgI4ndmXz&from=R6X0OwbURK5
    Explore at:
    tsv, csv, application/rssxml, xml, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Oct 21, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived historical community transmission and related data elements by county. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly historical community transmission data by county can also be found here: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).

    Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this historical dataset with the daily county-level transmission data from January 22, 2020, and a dataset with the daily values as originally posted on the COVID Data Tracker. Similar to this dataset, the original dataset with daily data as posted is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing community transmission data by county as originally posted is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).

    This public use dataset has 7 data elements reflecting historical data for community transmission levels for all available counties and jurisdictions. It contains historical data for the county level of community transmission and includes updated data submitted by states and jurisdictions. Each day, the dataset was updated to include the most recent days’ data and incorporate any historical changes made by jurisdictions. This dataset includes data since January 22, 2020. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.

    Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.

    CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2

    Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).

    Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).

    If the two metrics suggest different transmission levels, the higher level is selected. If one metric is missing, the other metric is used for the indicator.

    The reported transmission categories include:

    Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%;

    Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%;

    Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%;

    High Transmission Threshold: Counties with 100 or more total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 10.0% or greater.

    Blank: total new cases in the past 7 days are not reported (county data known to be unavailable) and the percentage of positive NAATs tests during the past 7 days (blank) are not reported.

    Data Suppression To prevent the release of data that could be used to identify people, data cells are suppressed for low frequency. When the case counts used to calculate the total new case rate metric ("cases_per_100K_7_day_count_change") is greater than zero and less than 10, this metric is set to "suppressed" to protect individual privacy. If the case count is 0, the total new case rate metric is still displayed.

    The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. This datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.

    Duplicate Records Issue A bug was found on 12/28/2021 that caused many records in the dataset to be duplicated. This issue was resolved on 01/06/2022.

  20. 500 Cities: Local Data for Better Health, 2019 release

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). 500 Cities: Local Data for Better Health, 2019 release [Dataset]. https://catalog.data.gov/dataset/500-cities-local-data-for-better-health-2019-release
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This is the complete dataset for the 500 Cities project 2019 release. This dataset includes 2017, 2016 model-based small area estimates for 27 measures of chronic disease related to unhealthy behaviors (5), health outcomes (13), and use of preventive services (9). Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. It represents a first-of-its kind effort to release information on a large scale for cities and for small areas within those cities. It includes estimates for the 500 largest US cities and approximately 28,000 census tracts within these cities. These estimates can be used to identify emerging health problems and to inform development and implementation of effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these measures include Behavioral Risk Factor Surveillance System (BRFSS) data (2017, 2016), Census Bureau 2010 census population data, and American Community Survey (ACS) 2013-2017, 2012-2016 estimates. Because some questions are only asked every other year in the BRFSS, there are 7 measures (all teeth lost, dental visits, mammograms, pap tests, colorectal cancer screening, core preventive services among older adults, and sleep less than 7 hours) from the 2016 BRFSS that are the same in the 2019 release as the previous 2018 release. More information about the methodology can be found at www.cdc.gov/500cities.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Most important health issues facing the U.S. according to U.S. adults 2025 [Dataset]. https://www.statista.com/statistics/986209/most-important-health-issues-facing-america-us/
Organization logo

Most important health issues facing the U.S. according to U.S. adults 2025

Explore at:
Dataset updated
Jun 13, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2019 - Jan 2024
Area covered
United States
Description

According to the data from 2025, some 16 percent of respondents said that rising health care costs were the most important health issue facing the United States. Cancer ranked second on the list with 15 percent. Issues with healthcare costsCurrently, the most urgent problem facing American healthcare is the high costs of care. The high expense of healthcare may deter people from getting the appropriate treatment when they need medical care or cause them to completely forego preventative care visits. Many Americans reported that they may skip prescription doses or refrain from taking medication as prescribed due to financial concerns. Such health-related behavior can result in major health problems, which may raise the long-term cost of care. Inflation, medical debt, and unforeseen medical expenses have all added to the burden that health costs are placing on household income. Gun violence issueThe gun violence epidemic has plagued the United States over the past few years, yet very little has been done to address the issue. In recent years, gun violence has become the leading cause of death among American children and teens. Even though more than half of Americans are in favor of tougher gun control regulations, there is little political will to strongly reform the current gun law. Gun violence has a deep traumatic impact on survivors and society, it is developing into a major public health crisis in the United States.

Search
Clear search
Close search
Google apps
Main menu