Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info
Islam is the major religion in many African countries, especially in the north of the continent. In Comoros, Libya, Western Sahara, at least 99 percent of the population was Muslim as of 202. These were the highest percentages on the continent. However, also in many other African nations, the majority of the population was Muslim. In Egypt, for instance, Islam was the religion of 79 percent of the people. Islam and other religions in Africa Africa accounts for an important share of the world’s Muslim population. As of 2019, 16 percent of the Muslims worldwide lived in Sub-Saharan Africa, while 20 percent of them lived in the Middle East and North Africa (MENA) region. Together with Christianity, Islam is the most common religious affiliation in Africa, followed by several traditional African religions. Although to a smaller extent, numerous other religions are practiced on the continent: these include Judaism, the Baha’i Faith, Hinduism, and Buddhism. Number of Muslims worldwide Islam is one of the most widespread religions in the world. There are approximately 1.9 billion Muslims globally, with the largest Muslim communities living in the Asia-Pacific region. Specifically, Indonesia hosts the highest number of Muslims worldwide, amounting to over 200 million, followed by India, Pakistan, and Bangladesh. Islam is also present in Europe and America. The largest Islamic communities in Europe are in France (5.72 million), Germany (4.95 million), and the United Kingdom (4.13 million). In the United States, there is an estimated number of around 3.45 million Muslims.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data for 130 countries
This Religion and State-Minorities (RASM) dataset is supplemental to the Religion and State Round 2 (RAS2) dataset. It codes the RAS religious discrimination variable using the minority as the unit of analysis (RAS2 uses a country as the unit of analysis and, is a general measure of all discrimination in the country). RASM codes religious discrimination by governments against all 566 minorities in 175 countries which make a minimum population cut off. Any religious minority which is at least 0.25 percent of the population or has a population of at least 500,000 (in countries with populations of 200 million or more) are included. The dataset also includes all Christian minorities in Muslim countries and all Muslim minorities in Christian countries for a total of 597 minorities. The data cover 1990 to 2008 with yearly codings.
These religious discrimination variables are designed to examine restrictions the government places on the practice of religion by minority religious groups. It is important to clarify two points. First, these variables focus on restrictions on minority religions. Restrictions that apply to all religions are not coded in this set of variables. This is because the act of restricting or regulating the religious practices of minorities is qualitatively different from restricting or regulating all religions. Second, this set of variables focuses only on restrictions of the practice of religion itself or on religious institutions and does not include other types of restrictions on religious minorities. The reasoning behind this is that there is much more likely to be a religious motivation for restrictions on the practice of religion than there is for political, economic, or cultural restrictions on a religious minority. These secular types of restrictions, while potentially motivated by religion, also can be due to other reasons. That political, economic, and cultural restrictions are often placed on ethnic minorities who share the same religion and the majority group in their state is proof of this.
This set of variables is essentially a list of specific types of religious restrictions which a government may place on some or all minority religions. These variables are identical to those included in the RAS2 dataset, save that one is not included because it focuses on foreign missionaries and this set of variables focuses on minorities living in the country. Each of the items in this category is coded on the following scale:
0. The activity is not restricted or the government does not engage in this practice.
1. The activity is restricted slightly or sporadically or the government engages in a mild form of this practice or a severe form sporadically.
2. The activity is significantly restricted or the government engages in this activity often and on a large scale.
A composite version combining the variables to create a measure of religious discrimination against minority religions which ranges from 0 to 48 also is included.
ARDA Note: This file was revised on October 6, 2017. At the PIs request, we removed the variable reporting on the minority's percentage of a country's population after finding inconsistencies with the reported values. For detailed data on religious demographics, see the "/data-archive?fid=RCSREG2" Target="_blank">Religious Characteristics of States Dataset Project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Census: Population: by Religion: Muslim: Urban data was reported at 68,740,419.000 Person in 2011. This records an increase from the previous number of 49,393,496.000 Person for 2001. India Census: Population: by Religion: Muslim: Urban data is updated yearly, averaging 59,066,957.500 Person from Mar 2001 (Median) to 2011, with 2 observations. The data reached an all-time high of 68,740,419.000 Person in 2011 and a record low of 49,393,496.000 Person in 2001. India Census: Population: by Religion: Muslim: Urban data remains active status in CEIC and is reported by Census of India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE001: Census: Population: by Religion.
In 2020, around 28.8 percent of the global population were identified as Christian. Around 25.6 percent of the global population identify as Muslims, followed by 14.9 percent of global populations as Hindu. The number of Muslims increased by 347 million, when compared to 2010 data, more than all other religions combined.
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
National coverage
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for Iran, Islamic Rep. is 1005.
Landline and mobile telephone
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
Age and sex structures: WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. An overview of the data can be found in Tatem et al, and a description of the modelling methods used found in Tatem et al and Pezzulo et al. The 'Global per country 2000-2020' datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World for each year 2000-2020 structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The 'individual countries' datasets represent older efforts to map population age and sex counts for each country separately, using a set of tailored geospatial inputs and differing methods and time periods. The 'whole continent' datasets are mosaics of the individual countries datasets. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076).
Islam and Christianity form the two dominant religions in Nigeria. Since colonialism, approximately 90 percent of the Nigerian people identify themselves as Islamic or Christian. The northern region of Nigeria is predominately Islamic, while the southern region is predominately Christian.
Nigeria’s contact with Islam predated that of Christianity and European colonialism; its spread was facilitated into Sub-Saharan Africa through trade and commerce. The northern part of Nigeria is symbolic to the history of Islam, as it penetrated the area through the Kanem-Borno Empire in the 11th century before spreading to other predominately Hausa states. Islam was then introduced into the traditional societies of the Yoruba-speaking people of south-west Nigeria through their established commercial relationship with people of the north, particularly the Nupe and Fulani.
Christianity reached Nigeria in the 15th century with the visitation of Catholic missionaries to the coastal areas of the Niger-Delta region. Christianity soon recorded a boost in the southern region given its opposition to the slave trade and its promotion of Western education.
The distinct religious divide has instigated violence in present-day Nigeria, including the Sharia riot in Kaduna in 2000, ongoing ethno-religious violence in Jos since 2001, and the 2011 post-election violence that erupted in some northern states, particularly in the city of Maiduguri. Nigerians’ continued loyalty to religion compared to that of the country continues to sustain major political debate, conflict, and violent outbreaks between populations of the two faiths.
ISO3-International Organization for Standardization 3-digit country code
NAME-Name of religious institution
TYPE-Type of religious institution
CITY-City religious institution is located in
SPA_ACC-Spatial accuracy of site location 1- high, 2 – medium, 3 - low
SOURCE_DT-Source creation date
SOURCE-Primary source
SOURCE2_DT-Secondary source creation date
SOURCE2-Secondary source
Collection
This HGIS was created using information collected from the web sites GCatholic.org, Islamic Finder, Wikimapia, and BBBike.org, which uses OpenStreetMap, a crowd-source collaboration project that geo-locates sites throughout the world. After collection, all education institutions were geo-located.
The data included herein have not been derived from a registered survey and should be considered approximate unless otherwise defined. While rigorous steps have been taken to ensure the quality of each dataset, DigitalGlobe Analytics is not responsible for the accuracy and completeness of data compiled from outside sources.
Sources (HGIS)
BBBike, "Nigeria." Last modified 2013. Accessed March 19, 2013. http://extract.bbbike.org.
GCatholic.org, "Catholic Churches in Federal Republic of Nigeria." Last modified 2013. Accessed April 4, 2013. http://www.gcatholic.org/.
Islamic Finder, "Nigeria." Last modified 2013. Accessed April 4, 2013. http://islamicfinder.org/.
Olanrewaju, Timothy. The Sun, "oko Haram attacks church in Maiduguri." Last modified 2013. Accessed April 9, 2013. http://sunnewsonline.com/.
Wikimapia, "Nigeria:Mosques/Churches." Last modified 2013. Accessed April 4, 2013. http://wikimapia.org/
World Watch Monitor, "Muslim Threat to Attack Church Raises Tensions." Last modified 2012. Accessed April 9, 2013. http://www.worldwatchmonitor.org/.
Sources (Metadata)
Danjibo, N.D. "Islamic Fundamentalism and Sectarian Violence: The "Maitatsine" and "Boko Haram" Crises in Northern Nigeria." manuscript., University of Ibadan, 2010. http://www.ifra-nigeria.org.
Olanrewaju, Timothy. The Sun, "oko Haram attacks church in Maiduguri." Last modified 2013. Accessed April 9, 2013. http://sunnewsonline.com/.
Onapajo, Hakeem. "Politics for God: Religion, Politics, and Conflict in Democratic Nigeria." Journal of Pan African Studies. 4. no. 9 (2012): 42-66. http://web.ebscohost.com (accessed March 26, 2013).
World Watch Monitor, "Muslim Threat to Attack Church Raises Tensions." Last modified 2012. Accessed April 9, 2013. http://www.worldwatchmonitor.org/.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National coverage.
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 1004.
Landline and Cellular Telephone
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Karnataka: Male data was reported at 4,007,871.000 Person in 03-01-2011. This records an increase from the previous number of 3,302,582.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Karnataka: Male data is updated decadal, averaging 3,655,226.500 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 4,007,871.000 Person in 03-01-2011 and a record low of 3,302,582.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Karnataka: Male data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Assam data was reported at 10,679,345.000 Person in 03-01-2011. This records an increase from the previous number of 8,240,611.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Assam data is updated decadal, averaging 9,459,978.000 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 10,679,345.000 Person in 03-01-2011 and a record low of 8,240,611.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Assam data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Uttarakhand data was reported at 1,406,825.000 Person in 03-01-2011. This records an increase from the previous number of 1,012,141.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Uttarakhand data is updated decadal, averaging 1,209,483.000 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 1,406,825.000 Person in 03-01-2011 and a record low of 1,012,141.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Uttarakhand data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Kerala data was reported at 4,621,685.000 Person in 03-01-2011. This records an increase from the previous number of 1,998,397.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Kerala data is updated decadal, averaging 3,310,041.000 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 4,621,685.000 Person in 03-01-2011 and a record low of 1,998,397.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Kerala data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Chhattisgarh data was reported at 514,998.000 Person in 03-01-2011. This records an increase from the previous number of 409,615.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Chhattisgarh data is updated decadal, averaging 462,306.500 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 514,998.000 Person in 03-01-2011 and a record low of 409,615.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Chhattisgarh data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Population: Religion: Islam data was reported at 459.800 Person th in 2015. This records an increase from the previous number of 457.435 Person th for 2010. Singapore Population: Religion: Islam data is updated yearly, averaging 457.435 Person th from Jun 2000 (Median) to 2015, with 3 observations. The data reached an all-time high of 459.800 Person th in 2015 and a record low of 371.660 Person th in 2000. Singapore Population: Religion: Islam data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.G002: Population by Religion .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Uttar Pradesh data was reported at 38,483,967.000 Person in 03-01-2011. This records an increase from the previous number of 30,740,158.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Uttar Pradesh data is updated decadal, averaging 34,612,062.500 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 38,483,967.000 Person in 03-01-2011 and a record low of 30,740,158.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Uttar Pradesh data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Population: Religion: Female: Islam data was reported at 233.800 Person th in 2015. This records an increase from the previous number of 231.478 Person th for 2010. Singapore Population: Religion: Female: Islam data is updated yearly, averaging 231.478 Person th from Jun 2000 (Median) to 2015, with 3 observations. The data reached an all-time high of 233.800 Person th in 2015 and a record low of 185.804 Person th in 2000. Singapore Population: Religion: Female: Islam data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.G002: Population by Religion .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Population: Religion: Male: Islam data was reported at 226.000 Person th in 2015. This records an increase from the previous number of 225.956 Person th for 2010. Singapore Population: Religion: Male: Islam data is updated yearly, averaging 225.956 Person th from Jun 2000 (Median) to 2015, with 3 observations. The data reached an all-time high of 226.000 Person th in 2015 and a record low of 185.856 Person th in 2000. Singapore Population: Religion: Male: Islam data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.G002: Population by Religion .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info