84 datasets found
  1. d

    Digital data sets describing population density in the conterminous US

    • catalog.data.gov
    • datadiscoverystudio.org
    • +1more
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital data sets describing population density in the conterminous US [Dataset]. https://catalog.data.gov/dataset/digital-data-sets-describing-population-density-in-the-conterminous-us
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    Grid of population density in the conterminous United States at a resolution of one kilometer. The grid was converted from an ASCII file obtained from the Consortium for International Earth Science Information Network (CIESIN).

  2. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  3. Population Density in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Population Density in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/a1926cb43e844c3f82275917d6eab47a
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  4. U

    2000 population density by block group for the conterminous United States

    • data.usgs.gov
    • search.dataone.org
    • +2more
    Updated Nov 24, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Geological Survey (2003). 2000 population density by block group for the conterminous United States [Dataset]. http://doi.org/10.5066/P9KO2YY3
    Explore at:
    Dataset updated
    Nov 24, 2003
    Dataset authored and provided by
    United States Geological Surveyhttp://www.usgs.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2000
    Area covered
    Contiguous United States, United States
    Description

    This data set represents 2000 population density by block group as a 100-m grid using data from the 2000 Census of Population and Housing. The demographic data is from CensusCD 2000 Short Form Blocks published by GeoLytics, E. Brunswick, NJ, which uses the 2000 Census Summary File 1 (SF 1). Grid cell values represent population density in people per square kilometer multiplied by 10 so that the data could be stored as integer.

  5. H

    United States of America - Population Density

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). United States of America - Population Density [Dataset]. https://data.humdata.org/dataset/worldpop-population-density-for-united-states-of-america
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    United States
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  6. A

    United States: High Resolution Population Density Maps + Demographic...

    • data.amerigeoss.org
    • data.humdata.org
    csv +2
    Updated Nov 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). United States: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://data.amerigeoss.org/th/dataset/united-states-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    geotiff(371290), geotiff(1776499), csv(739022265), geotiff(231977), geotiff(116587981), geotiff(1117383), geotiff(614476002), geotiff(304019), geotiff(2895), csv(483753848), geotiff(199544098), geotiff(224182623), geotiff(124627362), geotiff(237058), csv(472969656), geotiff(26946380), csv(489231061), geotiff(1228665), geotiff(405664), geotiff(550808683), geotiff(1532704), csv(487815277), geotiff(183428692), csv(685438176), csv(394330534), csv(485656695), geotiff(124039499), geotiff(469990091), geotiff(11461), csv(394996827), geotiff(34907364), geotiff(157250075), geotiff(3728), geotiff(170821611), geotiff(673517573), geotiff(1659759), geotiff(125397), geotiff(234451), geotiff(235352906), geotiff(93419790), csv(372023378), geotiff(5998), geotiff(48567), geotiff(52959901), geotiff(46501506), geotiff(61425), csv(474849010), geotiff(6551882), geotiff(390755), geotiff(115398457), geotiff(106036740), geotiff(115081607), geotiff(20024613), geotiff(235417782), geotiff(2093905), geotiff(6086942), gdal virtual format(16491), geotiff(48083), geotiff(1762232), geotiff(34651551), geotiff(273238), geotiff(30387688), geotiff(40913), geotiff(349586), geotiff(208940973), geotiff(1791166), geotiff(223427143), csv(371942136), geotiff(365873), geotiff(575702), csv(394139438), csv(394960076), geotiff(305108), geotiff(34077058), csv(599533500), geotiff(612496510), geotiff(671100977), geotiff(154041022)Available download formats
    Dataset updated
    Nov 23, 2021
    Dataset provided by
    UN Humanitarian Data Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    These high-resolution maps estimate not only the number of people living within 30-meter grid tiles, but also provide insights on demographics at unprecedentedly high resolutions. These maps aren’t built using Facebook data and instead rely on combining the power of machine vision AI with satellite imagery and census information.

  7. H

    United States of America: Population Density for 400m H3 Hexagons

    • data.humdata.org
    geopackage
    Updated Nov 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kontur (2023). United States of America: Population Density for 400m H3 Hexagons [Dataset]. https://data.humdata.org/dataset/kontur-population-united-states-of-america
    Explore at:
    geopackageAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Kontur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    United States population density for 400m H3 hexagons.

    Built from Kontur Population: Global Population Density for 400m H3 Hexagons Vector H3 hexagons with population counts at 400m resolution.

    Fixed up fusion of GHSL, Facebook, Microsoft Buildings, Copernicus Global Land Service Land Cover, Land Information New Zealand, and OpenStreetMap data.

  8. d

    Data from: U.S. block-level population density rasters for 1990, 2000, and...

    • dataone.org
    • data.usgs.gov
    • +3more
    Updated Apr 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James A Falcone (2017). U.S. block-level population density rasters for 1990, 2000, and 2010 [Dataset]. https://dataone.org/datasets/45ef0dfc-81ef-4bb3-8b18-a3ea778513f6
    Explore at:
    Dataset updated
    Apr 13, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    James A Falcone
    Area covered
    Variables measured
    Value
    Description

    This dataset consists of three raster datasets representing population density for the years 1990, 2000, and 2010. All three rasters are based on block-level census geography data. The 1990 and 2000 data are derived from data normalized to 2000 block boundaries, while the 2010 data are based on 2010 block boundaries. The 1990 and 2000 data are rasters at 100-meter (m) resolution, while the 2010 data are at 60-m resolution. See details about each dataset in the specific metadata for each raster.

  9. a

    COUNTIES

    • mce-data-uscensus.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Feb 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). COUNTIES [Dataset]. https://mce-data-uscensus.hub.arcgis.com/datasets/counties-41
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Population. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  10. 2021 Population Density by Urbanized Area

    • gis-fdot.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Aug 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Population Density by Urbanized Area [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/2021-population-density-by-urbanized-area
    Explore at:
    Dataset updated
    Aug 9, 2023
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    Each year, the Forecasting and Trends Office (FTO) publishes population estimates and future year projections. The population estimates can be used for a variety of planning studies including statewide and regional transportation plan updates, subarea and corridor studies, and funding allocations for various planning agencies. The 2021 population estimates are based on the population estimates developed by the Bureau of Economic and Business Research (BEBR) at the University of Florida. BEBR uses the decennial census count for April 1, 2020, as the starting point for state-level projections. More information is available from BEBR here. This dataset contains boundaries for all 2010 Census Urbanized Areas (UAs) in the State of Florida with 2021 population density estimates. All legal boundaries and names in this dataset are from the US Census Bureau’s TIGER/Line Files (2021). BEBR provides 2021 population estimates for counties in Florida. However, UA boundaries may not coincide with the jurisdictional boundaries of counties and UAs often spread into several counties. To estimate the population for an UA, first the ratio of the subject UA that is contained within a county (or sub-area) to the area of the entire county was determined. That ratio was multiplied by the estimated county population to obtain the population for that sub-area. The population for the entire UA is the sum of all sub-area populations estimated from the counties they are located within. For the 2010 Census, urban areas comprised a “densely settled core of census tracts and/or census blocks that meet minimum population density requirements, along with adjacent territory containing non-residential urban land uses as well as territory with low population density included to link outlying densely settled territory with the densely settled core.” In 2010, the US Census Bureau identified two types of urban areas—UAs and Urban Clusters (UCs). UAs have a population of 50,000 or more people. Note: Pensacola, FL--AL Urbanized Area is located in two states: Florida (Escambia County and Santa Rosa County) and Alabama (Baldwin County). 2021 population of Baldwin County, AL used for this estimation is from the US Census annual population estimates (2020-2021). All other Urbanized Areas are located entirely within the state of Florida. Please see the Data Dictionary for more information on data fields. Data Sources:FDOT FTO 2020 and 2021 Population Estimates by Urbanized Area and CountyUS Census Bureau 2020 Decennial CensusUS Census Bureau’s TIGER/Line Files (2021)Bureau of Economic and Business Research (BEBR) – Florida Estimates of Population 2021 Data Coverage: StatewideData Time Period: 2021 Date of Publication: October 2022 Point of Contact:Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719

  11. Wildfire Risk to Communities Housing Unit Density (Image Service)

    • agdatacommons.nal.usda.gov
    • anrgeodata.vermont.gov
    • +5more
    bin
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Wildfire Risk to Communities Housing Unit Density (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Wildfire_Risk_to_Communities_Housing_Unit_Density_Image_Service_/25973110
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 23, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  12. Population density and basic reproductive number of COVID-19 across United...

    • figshare.com
    application/gzip
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karla Therese Sy; Laura F. White; Brooke E. Nichols (2020). Population density and basic reproductive number of COVID-19 across United States counties (Data and Code) [Dataset]. http://doi.org/10.6084/m9.figshare.12858062.v5
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Aug 24, 2020
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Karla Therese Sy; Laura F. White; Brooke E. Nichols
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This repository includes:1. RData file that includes two data sets: (a) Data with all United State counties (n=3,221) (b) Data with United State counties with greater than 25 COVID-19 cases at the end of the exponential growth period (n=1,151)2. R code script to run the main and sensitivity analysis of the studyWork described in:Sy KTL, White LF, Nichols BE. Population density and basic reproductive number of COVID-19 across United States counties. Under Review, 2020.Original Data Sources:New York Times. Coronavirus (Covid-19) Data in the United States - https://github.com/nytimes/covid-19-data/blob/master/us-counties.csv

  13. U

    1990 population density by block group for the conterminous United States

    • data.usgs.gov
    • catalog.data.gov
    Updated Aug 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Geological Survey (2024). 1990 population density by block group for the conterminous United States [Dataset]. http://doi.org/10.5066/P97XQWSD
    Explore at:
    Dataset updated
    Aug 11, 2024
    Dataset authored and provided by
    United States Geological Surveyhttp://www.usgs.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1990
    Area covered
    Contiguous United States, United States
    Description

    This data set represents 1990 population density by block group as a 100-m grid using data from the 1990 Census of Population and Housing (Public Law 94-171 redistricting data). Grid cell values represent population density in people per square kilometer multiplied by 10 so that the data could be stored as integer.

  14. d

    Data from: Attributes for NHDplus Catchments (Version 1.1) for the...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000 [Dataset]. https://catalog.data.gov/dataset/attributes-for-nhdplus-catchments-version-1-1-for-the-conterminous-united-states-populatio
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  15. d

    Population Density in the Western United States (Individuals / ha)

    • search.dataone.org
    Updated Oct 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steve Hanser, USGS-FRESC, Snake River Field Station (2016). Population Density in the Western United States (Individuals / ha) [Dataset]. https://search.dataone.org/view/04f758d8-9caa-40ab-af6e-bb72b1b7a007
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Steve Hanser, USGS-FRESC, Snake River Field Station
    Area covered
    Variables measured
    Value, ObjectID
    Description

    This map of human habitation was developed, following a modification of Schumacher et al. (2000), by incorporating 2000 U.S Census Data and land ownership. The 2000 U.S. Census Block data and ownership map of the western United States were used to correct the population density for uninhabited public lands. All census blocks in the western United States were merged into one shapefile which was then clipped to contain only those areas found on private or indian reservation lands because human habitation on federal land is negligible. The area (ha) for each corrected polygon was calculated and the 2000 census block data table was joined to the shapefile. In a new field, population density (individuals/ha) corrected for public land in census blocks was calculated . SHAPEGRID in ARC/INFO was used to convert population density values to grid with 90m resolution.

  16. d

    Census Block Groups by Population Density (2012 ACS).

    • datadiscoverystudio.org
    • catalog.data.gov
    • +2more
    csv, json, rdf, xml
    Updated Feb 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Census Block Groups by Population Density (2012 ACS). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/1a50757203ad46dc95de16bdb0a4be9d/html
    Explore at:
    csv, rdf, json, xmlAvailable download formats
    Dataset updated
    Feb 8, 2018
    Description

    description: U.S. Census Block Groups represents the U.S. Census block groups of the United States in the 50 states, the District of Columbia, and Puerto Rico.; abstract: U.S. Census Block Groups represents the U.S. Census block groups of the United States in the 50 states, the District of Columbia, and Puerto Rico.

  17. a

    POPULATION By Town and State 1990-2010 NBEP2017 (excel)

    • hub.arcgis.com
    • narragansett-bay-estuary-program-nbep.hub.arcgis.com
    Updated Jan 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBEP_GIS (2020). POPULATION By Town and State 1990-2010 NBEP2017 (excel) [Dataset]. https://hub.arcgis.com/datasets/5fbb987153c742a7a6a1f274b5569496
    Explore at:
    Dataset updated
    Jan 29, 2020
    Dataset authored and provided by
    NBEP_GIS
    Description

    This excel contains results from the 2017 State of Narragansett Bay and Its Watershed Technical Report (nbep.org), Chapter 4: "Population." The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 1990, 2000, and 2010 10m cell population density rasters were produced using Rhode Island state land use data, Massachusetts state land use, Connecticut NLCD land use data, and U.S. Census data. To generate a population estimate (number of persons) for any given area within the boundaries of this raster, NBEP used the the Zonal Statistics as Table tool to sum the 10m cell density values within a given zone dataset (e.g., watershed polygon layer). Results presented include population estimates (1990, 2000, 2010) as well as calculation of percent change (1990-2000;2000-2010;1990-2010).

  18. Federated States of Micronesia: High Resolution Population Density Maps +...

    • data.amerigeoss.org
    • data.humdata.org
    csv, geotiff, json
    Updated Nov 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). Federated States of Micronesia: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://data.amerigeoss.org/bg/dataset/federated-states-of-micronesia-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    csv(84419), geotiff(40916258), csv(84477), geotiff(40916712), geotiff(40916524), geotiff(40916435), geotiff(40916059), csv(84538), geotiff(40916492), csv(84548), geotiff(40916174), json(73893), csv(84513), csv(84461), csv(84640)Available download formats
    Dataset updated
    Nov 23, 2021
    Dataset provided by
    United Nationshttp://un.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Micronesia
    Description

    The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Micronesia: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).

  19. H

    United States Minor Outlying Islands (the): Population Density for 400m H3...

    • data.humdata.org
    geopackage
    Updated Nov 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Minor Outlying Islands (the): Population Density for 400m H3 Hexagons [Dataset]. https://data.humdata.org/dataset/kontur-population-united-states-minor-outlying-islands-the
    Explore at:
    geopackageAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Kontur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States Minor Outlying Islands
    Description

    United States Minor Outlying Islands population density for 400m H3 hexagons.

    Built from Kontur Population: Global Population Density for 400m H3 Hexagons Vector H3 hexagons with population counts at 400m resolution.

    Fixed up fusion of GHSL, Facebook, Microsoft Buildings, Copernicus Global Land Service Land Cover, Land Information New Zealand, and OpenStreetMap data.

  20. H

    United States Virgin Islands - Population Density

    • data.humdata.org
    geotiff
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). United States Virgin Islands - Population Density [Dataset]. https://data.humdata.org/dataset/worldpop-population-density-for-united-states-virgin-islands
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    WorldPop
    Area covered
    U.S. Virgin Islands
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Digital data sets describing population density in the conterminous US [Dataset]. https://catalog.data.gov/dataset/digital-data-sets-describing-population-density-in-the-conterminous-us

Digital data sets describing population density in the conterminous US

Explore at:
Dataset updated
Sep 2, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Contiguous United States, United States
Description

Grid of population density in the conterminous United States at a resolution of one kilometer. The grid was converted from an ASCII file obtained from the Consortium for International Earth Science Information Network (CIESIN).

Search
Clear search
Close search
Google apps
Main menu