Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GENERAL INFORMATION
Title of Dataset: A dataset from a survey investigating disciplinary differences in data citation
Date of data collection: January to March 2022
Collection instrument: SurveyMonkey
Funding: Alfred P. Sloan Foundation
SHARING/ACCESS INFORMATION
Licenses/restrictions placed on the data: These data are available under a CC BY 4.0 license
Links to publications that cite or use the data:
Gregory, K., Ninkov, A., Ripp, C., Peters, I., & Haustein, S. (2022). Surveying practices of data citation and reuse across disciplines. Proceedings of the 26th International Conference on Science and Technology Indicators. International Conference on Science and Technology Indicators, Granada, Spain. https://doi.org/10.5281/ZENODO.6951437
Gregory, K., Ninkov, A., Ripp, C., Roblin, E., Peters, I., & Haustein, S. (2023). Tracing data:
A survey investigating disciplinary differences in data citation. Zenodo. https://doi.org/10.5281/zenodo.7555266
DATA & FILE OVERVIEW
File List
Additional related data collected that was not included in the current data package: Open ended questions asked to respondents
METHODOLOGICAL INFORMATION
Description of methods used for collection/generation of data:
The development of the questionnaire (Gregory et al., 2022) was centered around the creation of two main branches of questions for the primary groups of interest in our study: researchers that reuse data (33 questions in total) and researchers that do not reuse data (16 questions in total). The population of interest for this survey consists of researchers from all disciplines and countries, sampled from the corresponding authors of papers indexed in the Web of Science (WoS) between 2016 and 2020.
Received 3,632 responses, 2,509 of which were completed, representing a completion rate of 68.6%. Incomplete responses were excluded from the dataset. The final total contains 2,492 complete responses and an uncorrected response rate of 1.57%. Controlling for invalid emails, bounced emails and opt-outs (n=5,201) produced a response rate of 1.62%, similar to surveys using comparable recruitment methods (Gregory et al., 2020).
Methods for processing the data:
Results were downloaded from SurveyMonkey in CSV format and were prepared for analysis using Excel and SPSS by recoding ordinal and multiple choice questions and by removing missing values.
Instrument- or software-specific information needed to interpret the data:
The dataset is provided in SPSS format, which requires IBM SPSS Statistics. The dataset is also available in a coded format in CSV. The Codebook is required to interpret to values.
DATA-SPECIFIC INFORMATION FOR: MDCDataCitationReuse2021surveydata
Number of variables: 95
Number of cases/rows: 2,492
Missing data codes: 999 Not asked
Refer to MDCDatacitationReuse2021Codebook.pdf for detailed variable information.
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases:
360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.
Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment
Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.
Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
Using Factori Consumer Data graph you can solve use cases like:
Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.
Lookalike Modeling
Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers
And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The populations of interest in modern studies are very often heterogeneous. The population heterogeneity, the qualitative nature of the outcome variable and the high dimensionality of the predictors pose significant challenge in statistical analysis. In this article, we introduce a category-adaptive screening procedure with high-dimensional heterogeneous data, which is to detect category-specific important covariates. The proposal is a model-free approach without any specification of a regression model and an adaptive procedure in the sense that the set of active variables is allowed to vary across different categories, thus making it more flexible to accommodate heterogeneity. For response-selective sampling data, another main discovery of this article is that the proposed method works directly without any modification. Under mild regularity conditions, the newly procedure is shown to possess the sure screening and ranking consistency properties. Simulation studies contain supportive evidence that the proposed method performs well under various settings and it is effective to extract category-specific information. Applications are illustrated with two real datasets. Supplementary materials for this article are available online.
https://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.5683/SP3/9TET2Thttps://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.5683/SP3/9TET2T
This new product will present data for specific census topics and population groups according to selected demographic, cultural, and socio-economic characteristics. These detailed 'profile-type' tables expand the analytical depth of basic census information. Special interest profiles include: ethnic groups, Aboriginal peoples, occupation, industry, and place of work.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Auxiliary Data.gdb: Land_use: original land use data POI_name: interests-point-data from the Amap platform (name indicates category)
New_gridded_population_dataset(.gdb): experimental result data, i.e., a gridded population map of mainland China with a resolution of 100 meters
New_minus_WorldPop_PopulationResidual(.gdb): pixel-level residuals of the new gridded population dataset with the Worldpop dataset
POI_Correlation_Coefficient: Zonal statistical output of POI kernel density values: summary of various POI kernel densities in residential areas of administrative units Summary of POI Pearson correlation coefficients: sum of Pearson's correlation coefficients for 13 types of POIs at a certain bandwidth
PopulationData_AdministrativeUnitLevel.gdb: Population_data_mainlandChina_level3: population data at the district and county level in mainland China Population_data_Name_level4_Table: township and street-level population data for provinces and municipalities
Note: Due to the storage space limitation, 3D building, nighttime light, and WorldPop datasets have not been uploaded. To access these publicly available data, please visit the official website via the "Related links" at the bottom. In addition, we are not authorized to share data for the fourth level of administrative boundaries, so we only share the corresponding population data in tabular form.
The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost.
The APS allows for analysis to be carried out on detailed subgroups and below regional level. In recent years (particularly with the sample size of the LFS 5 quarter dataset reducing) there has been some interest in producing a two year APS longitudinal dataset to look at any trends that may occur over a year. The APS Two-Year Longitudinal Datasets, covering 2012/13 onwards, have been deposited as a result of this work. Person- and Household-level APS datasets are also available.
For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation.
Occupation data for 2021 and 2022
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022
A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data collection contains de-identified clinical health service utilisation data from Bendigo Health and the General Practitioners Practices associated with the Loddon Mallee Murray Medicare Local. The collection also includes associated population health data from the ABS, AIHW and the Municipal Health Plans. Health researchers have a major interest in how clinical data can be used to monitor population health and health care in rural and regional Australia through analysing a broad range of factors shown to impact the health of different populations. The Population Health data collection provides students, managers, clinicians and researchers the opportunity to use clinical data in the study of population health, including the analysis of health risk factors, disease trends and health care utilisation and outcomes.Temporal range (data time period):2004 to 2014Spatial coverage:Bendigo Latitude -36.758711200000010000, Bendigo Longitude 144.283745899999990000
The goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to understand how county-level COVID-19 vaccination hesitancy changed over time in the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘NYSERDA Low- to Moderate-Income New York State Census Population Analysis Dataset: Average for 2013-2015’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/8bd0ae94-40d3-4c9b-8a6b-de032e07929f on 12 February 2022.
--- Dataset description provided by original source is as follows ---
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov.
The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015.
Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population.
The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight.
The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
--- Original source retains full ownership of the source dataset ---
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can download data or view data tables on topics related to the labor force of the United States. Background Current Population Survey is a joint effort between the Bureau of Labor Statistics and the Census Bureau. It provides information and data on the labor force of the United States, such as: employment, unemployment, earnings, hours of work, school enrollment, health, employee benefits and income. The CPS is conducted monthly and has a sample of approximately 50,000 households. It is representative of the non-institutionalized US population. The sample provides estimates for the nation as a whole and serves as part of model-based estimates for individual states and other geographic areas. User Functionality Users can download data sets or view data tables on their topic of interest. Data can be organized by a variety of demographic variables, including: sex, age, race, marital status and educational attainment. Data is available on a national or state level. Data Notes The CPS is conducted monthly and has a sample of approximately 50,000 households. It is representative of the non-institutionalized US population. The sample provides estimates for th e nation as a whole and serves as part of model-based estimates for individual states and other geographic areas.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Population estimates relate to the population as of 30th June each year, and therefore are often referred to as mid-year estimates. They are used to allocate public funds to the Northern Ireland Executive through the Barnett formula and are widely used by Northern Ireland government departments for the planning of services, such as health and education. These statistics are also of interest to those involved in research and academia. They are widely used to express other statistics as a rate, and thus enable comparisons across the United Kingdom and other countries. Furthermore, population estimates form the basis for future population statistics such as population projections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.
2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。
To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.
交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
如果您遇到任何问题,请通过电子邮件联系我们。
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Effective conservation and management of animal populations requires knowledge of abundance and trends. For many species, these quantities are estimated using systematic visual surveys. Additional individual-level data are available for some species. Integrated population modelling (IPM) offers a mechanism for leveraging these datasets into a single estimation framework. IPMs that incorporate both population- and individual-level data have previously been developed for birds, but have rarely been applied to cetaceans. Here, we explore how IPMs can be used to improve the assessment of cetacean populations. We combined three types of data that are typically available for cetaceans of conservation concern: population-level visual survey data, individual-level capture-recapture data, and data on anthropogenic mortality. We used this IPM to estimate the population dynamics of the Cook Inlet population of beluga whales (CIBW; Delphinapterus leucas) as a case study. Our state-space IPM included a population process model and three observational submodels: 1) a group detection model to describe group size estimates from aerial survey data; 2) a capture-recapture model to describe individual photographic capture-recapture data; and 3) a Poisson regression model to describe historical hunting data. The IPM produces biologically plausible estimates of population trajectories consistent with all three datasets. The estimated population growth rate since 2000 is less than expected for a recovering population. The estimated juvenile/adult survival rate is also low compared to other cetacean populations, indicating that low survival may be impeding recovery. This work demonstrates the value of integrating various data sources to assess cetacean populations and serves as an example of how multiple, imperfect datasets can be combined to improve our understanding of a population of interest. The model framework is applicable to other cetacean populations and to other taxa for which similar data types are available.
Methods /Data/CIBW_RSideCapHist_McGuire&Stephens.csv contains a matrix of right side capture histories (1 = captured, 0 = not captured) for each individual (rows) and year (columns). Photographic capture-recapture data were collected by Tamara McGuire. These data are made available here, without restriction, but anyone wishing to use these data is requested to contact tamaracookinletbeluga@gmail.com, who can provide further information on how raw data were processed to provide capture histories.
/Data/CIBW_HuntData_Mahoney&Shelden2000.xlsx contains the minimum documented number of animals killed (MinKilled) for years between 1950 and 1998 as published in Mahoney and Shelden 2000. Entries which are NA indicate that no data were available for that year.
/Data/CIBW_Abundance_HobbsEtAl2015.xlsx contains the total group size estimates from Hobbs et al. 2015.
/Data/CIBW_Abundance_BoydEtAl2019.txt contains an array with dimensions [1:1000, 1:8, 1:11] containing 1000 posterior samples of total group size for up to 8 survey days over 11 years, as described in Boyd et al. 2019.
A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico counties). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. As in the decennial census, strict confidentiality laws protect all information that could be used to identify individuals or households.The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. While each full Data Profile contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by New Mexico county boundaries.
The National Population Database (NPD) is a point-based Geographical Information System (GIS) dataset that combines locational information from providers like the Ordnance Survey with population information about those locations, mainly sourced from Government statistics. The points (and sometimes polygons) represent individual buildings, so the NPD allows detailed local analysis for anywhere in Great Britain.
The Health & Safety Laboratory (HSL) working with Staffordshire University originally created the NPD in 2004 to help its parent organisation, the Health and Safety Executive (HSE), assess the risks to society of major hazard sites e.g. oil refineries, chemical works and gas holders. Of particular interest to HSE were 'sensitive' populations e.g. schools and hospitals where the people at those locations may be more vulnerable to harm and potentially harder to evacuate in an emergency. The data is split into 5 themes: residential, sensitive populations, transport, workplaces and leisure.
More information about the NPD can be found here:
https://www.hsl.gov.uk/what-we-do/better-decisions/geoanalytics/national-population-database
The NPD was created using various datasets available within Government as part of the Public Sector Mapping Agreement (PSMA) and contains other intellectual property so is only available under license and for a fee. Please contact the HSL GIS Team if you would like to discuss gaining access to the sample or full dataset.
A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The datasets contain different indicators that have been collected over time that might help in analysis, modeling, prediction and projection of the COVID-19 pandemic. Some of these datasets pertain to health and demographic information such as number of beds, hospital workers, mortality from certain conditions, health expenditures, WASH, age of population, number of the population of certain age groups in a country, etc.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GENERAL INFORMATION
Title of Dataset: A dataset from a survey investigating disciplinary differences in data citation
Date of data collection: January to March 2022
Collection instrument: SurveyMonkey
Funding: Alfred P. Sloan Foundation
SHARING/ACCESS INFORMATION
Licenses/restrictions placed on the data: These data are available under a CC BY 4.0 license
Links to publications that cite or use the data:
Gregory, K., Ninkov, A., Ripp, C., Peters, I., & Haustein, S. (2022). Surveying practices of data citation and reuse across disciplines. Proceedings of the 26th International Conference on Science and Technology Indicators. International Conference on Science and Technology Indicators, Granada, Spain. https://doi.org/10.5281/ZENODO.6951437
Gregory, K., Ninkov, A., Ripp, C., Roblin, E., Peters, I., & Haustein, S. (2023). Tracing data:
A survey investigating disciplinary differences in data citation. Zenodo. https://doi.org/10.5281/zenodo.7555266
DATA & FILE OVERVIEW
File List
Additional related data collected that was not included in the current data package: Open ended questions asked to respondents
METHODOLOGICAL INFORMATION
Description of methods used for collection/generation of data:
The development of the questionnaire (Gregory et al., 2022) was centered around the creation of two main branches of questions for the primary groups of interest in our study: researchers that reuse data (33 questions in total) and researchers that do not reuse data (16 questions in total). The population of interest for this survey consists of researchers from all disciplines and countries, sampled from the corresponding authors of papers indexed in the Web of Science (WoS) between 2016 and 2020.
Received 3,632 responses, 2,509 of which were completed, representing a completion rate of 68.6%. Incomplete responses were excluded from the dataset. The final total contains 2,492 complete responses and an uncorrected response rate of 1.57%. Controlling for invalid emails, bounced emails and opt-outs (n=5,201) produced a response rate of 1.62%, similar to surveys using comparable recruitment methods (Gregory et al., 2020).
Methods for processing the data:
Results were downloaded from SurveyMonkey in CSV format and were prepared for analysis using Excel and SPSS by recoding ordinal and multiple choice questions and by removing missing values.
Instrument- or software-specific information needed to interpret the data:
The dataset is provided in SPSS format, which requires IBM SPSS Statistics. The dataset is also available in a coded format in CSV. The Codebook is required to interpret to values.
DATA-SPECIFIC INFORMATION FOR: MDCDataCitationReuse2021surveydata
Number of variables: 95
Number of cases/rows: 2,492
Missing data codes: 999 Not asked
Refer to MDCDatacitationReuse2021Codebook.pdf for detailed variable information.