Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Population by Country - 2020’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/tanuprabhu/population-by-country-2020 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.
Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.
Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.
https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">
You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.
Below is the code that I used to scrape the code from the website
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">
Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.
As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting
--- Original source retains full ownership of the source dataset ---
As a source of animal and plant population data, the Global Population Dynamics Database (GPDD) is unrivalled. Nearly five thousand separate time series are available here. In addition to all the population counts, there are taxonomic details of over 1400 species. The type of data contained in the GPDD varies enormously, from annual counts of mammals or birds at individual sampling sites, to weekly counts of zooplankton and other marine fauna. The project commenced in October 1994, following discussions on ways in which the collaborating partners could make a practical and enduring contribution to research into population dynamics. A small team was assembled and, with assistance and advice from numerous interested parties we decided to construct the database using the popular Microsoft Access platform. After an initial design phase, the major task has been that of locating, extracting, entering and validating the data in all the various tables. Now, nearly 5000 individual datasets have been entered onto the GPDD. The Global Population Dynamics Database comprises six Tables of data and information. The tables are linked to each other as shown in the diagram shown in figure 3 of the GPDD User Guide (GPDD-User-Guide.pdf). Referential integrity is maintained through record ID numbers which are held, along with other information in the Main Table. It's structure obeys all the rules of a standard relational database.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
The increased world population is among the fierce problems the world is facing right now and it will get uncontrolled in the coming future if proper steps for its betterment were not taken immediately. This world has observed the fastest growth during the 20th century. In the 1950s world population was 2.7 billion, By the end of this year it will cross 8 billion. This dataset is uploaded with the assumption to use your Data Science, Machine learning, and Predictive analytics skills and answer the following questions. 1. Which countries have the highest growth rate. 2. What are the densely populated countries in the world. 3. Keeping in view all the variables in mind which countries should take serious steps to control their population.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.
2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。
To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.
交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
如果您遇到任何问题,请通过电子邮件联系我们。
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality. 持续监测全球人口空间动态对于实施与可持续发展相关的有效政策至关重要,例如流行病学、城市规划和全球不平等。
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2022. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The temporal and spatial validation results demonstrate that the GlobPOP dataset is highly accurate. GlobPOP是一套新的连续全球网格人口产品,时间跨度为从 1990 年到 2022 年,空间分辨率为 30 弧秒。数据生产融合框架基于聚类分析和统计学习方法,旨在融合现有的五个 产品(GHS-POP、GRUMP、GPWv4、LandScan和WorldPop)。时空验证结果表明GlobPOP 数据集高度准确。
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level. 通过人口计数和人口密度格式的 GlobPOP 数据集,研究人员和政策制定者可以利用该数据集对人口进行时间序列分析,并探索不同尺度的人口发展时空模式。
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)
本数据相关论文已发表在Scientific Data,代码可在GitHub获取。
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Web Map Service that supports the IRENA Global Atlas for Renewable EnergyThe LandScan 2018 Global Population Database was developed by Oak Ridge National Laboratory (ORNL) for the United States Department of Defense (DoD).ORNL’s LandScan™ is a community standard for global population distribution data. At approximately 1 km (30″ X 30″) spatial resolution, it represents an ambient population (average over 24 hours) distribution. The database is refreshed annually and released to the broader user community around October. LandScan™ is now available at no cost to the educational community. The latest LandScan™ dataset available is LandScan Global 2018. Older LandScan Global data sets (LandScan 1998, 2000-2017) are available through site. These data set can be licensed for commercial and other applications through multiple third-party vendors. LandScan is developed using best available demographic (Census) and geographic data, remote sensing imagery analysis techniques within a multivariate dasymetric modeling framework to disaggregate census counts within an administrative boundary. Since no single population distribution model can account for the differences in spatial data availability, quality, scale, and accuracy as well as the differences in cultural settlement practices, LandScan population distribution is essentially a combination of locally adoptive models that are tailored to match the data conditions and geographical nature of each individual country and region.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
This dataset provides data at the county level for the contiguous United States. It includes daily Global Horizontal Irradiance (GHI) data from 1991-2012 provided by the Environmental Remote Sensing group at the Rollins School of Public Health at Emory University. Please refer to the metadata attachment for more information. These data are used by the CDC's National Environmental Public Health Tracking Network to generate sunlight and ultraviolet (UV) measures. Learn more about sunlight and UV on the Tracking Network's website: https://ephtracking.cdc.gov/showUVLanding. By using these data, you signify your agreement to comply with the following requirements: 1. Use the data for statistical reporting and analysis only. 2. Do not attempt to learn the identity of any person included in the data and do not combine these data with other data for the purpose of matching records to identify individuals. 3. Do not disclose of or make use of the identity of any person or establishment discovered inadvertently and report the discovery to: trackingsupport@cdc.gov. 4. Do not imply or state, either in written or oral form, that interpretations based on the data are those of the original data sources and CDC unless the data user and data source are formally collaborating. 5. Acknowledge, in all reports or presentations based on these data, the original source of the data and CDC. 6. Suggested citation: Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Web. Accessed: insert date. www.cdc.gov/ephtracking. Problems or Questions? Email trackingsupport@cdc.gov.
https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/
Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.
Projected Net International Migration by Single Year of Age, Sex, Race, and Hispanic Origin for the United States: 2012 to 2060 File: 2012 National Population Projections Source: U.S. Census Bureau, Population Division Release Date: December 2012 NOTE: Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. The projections generally do not precisely agree with population estimates available elsewhere on the Census Bureau website for methodological reasons. Where both estimates and projections are available for a given time reference, we recommend that you use the population estimates as the measure of the current population. For detailed information about the methods used to create the population projections, see http://www.census.gov/population/projections/methodology/. *** The U.S. Census Bureau periodically produces projections of the United States resident population by age, sex, race, and Hispanic origin. Population projections are estimates of the population for future dates. They are typically based on an estimated population consistent with the most recent decennial census and are produced using the cohort-component method. Projections illustrate possible courses of population change based on assumptions about future births, deaths, net international migration, and domestic migration. In some cases, several series of projections are produced based on alternative assumptions for future fertility, life expectancy, net international migration, and (for state-level projections) state-to-state or domestic migration. Additional information is available on the Population Projections website: http://www.census.gov/population/projections/.
World Marriage Data 2012 provides a comparable and up-to-date set of data on the marital status of the population for all countries and areas of the world. Data are presented for the closest date available around five reference dates: the years closest to 1970, 1985, 1995, 2005 and the most recent data available.
I have pulled this data from the United Nations Data portal, did some simple post-processing to make it more user-friendly.
I primarily feel this data will be useful in conjunction with other datasets related to different disciplines wherein understanding the marriage trends will add value to the analysis.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
GPWv4 is a gridded data product that depicts global population data from the 2010 round of Population and Housing Censuses. The Population Density, 2015 layer represents persons per square kilometer for year 2015. Data SummaryGPWv4 is constructed from national or subnational input areal units of varying resolutions. The native grid cell size is 30 arc-seconds, or ~1 km at the equator. Separate grids are available for population count, population density, estimated land area, and data quality indicators; which include the water mask represented in this service. Population estimates are derived by extrapolating the raw census counts to estimates for the 2010 target year. The development of GPWv4 builds upon previous versions of the data set (Tobler et al., 1997; Deichmann et al., 2001; Balk et al., 2006).The full GPWv4 data collection will consist of population estimates for the years 2000, 2005, 2010, 2015, and 2020, and will include grids for estimates of total population, age, sex, and urban/rural status. However, this release consists only of total population estimates for the year 2015. This data is being released now to allow users access to the population grids.Recommended CitationCenter for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ. Accessed DAY MONTH YEAR
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sea-level rise (SLR) due to climate change is a serious global threat: The scientific evidence is now overwhelming. Continued growth of greenhouse gas emissions and associated global warming could well promote SLR of 1m in this century, and unexpectedly rapid breakup of the Greenland and West Antarctic ice sheets might produce a 3-5m SLR. In this research, we have assessed the consequences of continued SLR for 84 coastal developing countries. Geographic Information System (GIS) software has been used to overlay the best available, spatially-disaggregated global data on critical impact elements (land, population, agriculture, urban extent, wetlands, and GDP), with the inundation zones projected for 1-5m SLR. This research was carried out by the World Bank in 2006, and was funded by the Canadian Trust Fund (TF030569) sponsored by the Canadian International Development Agency (CIDA).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Blue Earth City township. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth City township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Population by Country - 2020’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/tanuprabhu/population-by-country-2020 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.
Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.
Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.
https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">
You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.
Below is the code that I used to scrape the code from the website
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">
Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.
As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting
--- Original source retains full ownership of the source dataset ---