Facebook
TwitterDownload high-quality, up-to-date shapefile boundaries (SHP, projection system SRID 4326). Our Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Facebook
Twitter**THIS NEWER 2016 DIGITAL MAP REPLACES THE OLDER 2014 VERSION OF THE GRI GATE Geomorphological-GIS data. The Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gate_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (gate_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gate_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gate_pre-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The Northern Circumpolar Soil Carbon Database version 2 (NCSCDv2) is a geospatial database created for the purpose of quantifying storage of organic carbon in soils of the northern circumpolar permafrost region down to a depth of 300 cm. The NCSCDv2 is based on polygons from different regional soils maps homogenized to the U.S. Soil Taxonomy. The NCSCDv2 contains information on fractions of coverage of different soil types (following U.S. Soil Taxonomy nomenclature) as well as estimated storage of soil organic carbon (kg/m2) between 0-30 cm, 0-100 cm, 100-200 cm and 200-300 cm depth. The database was compiled by combining and homogenizing several regional/national soil maps. To calculate storage of soil organic carbon, these soil maps have been linked to field-data on soil organic carbon storage from sites with circumpolar coverage.
More information on database processing and properties can be found in the product guide.
The data is stored as ESRI shapefiles with associated attribute table databases. There are separate zipped data-folders with: (1) a merged circumpolar dataset in the Lambert Azimuthal Equal Area (LAEA) projection, (2) a merged circumpolar dataset geographic latitude/longitude coordinates (WGS84), (3) all regions in separate shape-files, in LAEA projection and (4) all regions in separate shape-files with geographic latitude/longitude coordinates (WGS84).
In order to use these data, you must cite this data set with the following citation:
Hugelius G, Bockheim JG, Camill, P, Elberling B, Grosse G, Harden JW, Johnson K, Jorgenson T, Koven C, Kuhry P, Michaelson G, Mishra U, Palmtag J, Ping C-L, O’Donnell J, Schirrmeister L, Schuur EAG, Sheng Y, Smith LC, Strauss J, Yu Z. (2013) A new dataset for estimating organic carbon storage to 3m depth in soils of the northern circumpolar permafrost region. Earth System Science Data, 5, 393–402, doi:10.5194/essd-5-393-2013.
Facebook
TwitterUSGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like is equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy, while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized in a similar manner to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require a LPS projection and equatorial areas a transverse Mercator. We describe the difference in the techniques and methods report associated with this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These data will be released at a later date. Two versions of the shape files are provided in this data release, PCRS and Display only. See LTM_LPS_LGRS_Shapefiles.zip file. PCRS are limited to a single zone and are projected in either LTM or LPS with topocentric coordinates formatted in Eastings and Northings. Display only shapefiles are formatted in lunar planetocentric latitude and longitude, a Mercator or Equirectangular projection is best for these grids. A description of each grid is provided below: Equatorial (Display Only) Grids: Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Merged LTM zone borders Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones Merged Global Areas (8°×8° and 8°×10° extended area) for all LTM zones Merged 25km grid for all LTM zones PCRS Shapefiles:` Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones 25km Gird for North and South LPS zones Global Areas (8°×8° and 8°×10° extended area) for each LTM zone 25km grid for each LTM zone The rasters in this data release detail the linear distortions associated with the LTM and LPS system projections. For these products, we utilize the same definitions of distortion as the U.S. State Plane Coordinate System. Scale Factor, k - The scale factor is a ratio that communicates the difference in distances when measured on a map and the distance reported on the reference surface. Symbolically this is the ratio between the maps grid distance and distance on the lunar reference sphere. This value can be precisely calculated and is provided in their defining publication. See Snyder (1987) for derivation of the LPS scale factor. This scale factor is unitless and typically increases from the central scale factor k_0, a projection-defining parameter. For each LPS projection. Request McClernan et. al., (in-press) for more information. Scale Error, (k-1) - Scale-Error, is simply the scale factor differenced from 1. Is a unitless positive or negative value from 0 that is used to express the scale factor’s impact on position values on a map. Distance on the reference surface are expended when (k-1) is positive and contracted when (k-1) is negative. Height Factor, h_F - The Height Factor is used to correct for the difference in distance caused between the lunar surface curvature expressed at different elevations. It is expressed as a ratio between the radius of the lunar reference sphere and elevations measured from the center of the reference sphere. For this work, we utilized a radial distance of 1,737,400 m as recommended by the IAU working group of Rotational Elements (Archinal et. al., 2008). For this calculation, height factor values were derived from a LOLA DEM 118 m v1, Digital Elevation Model (LOLA Science Team, 2021). Combined Factor, C_F – The combined factor is utilized to “Scale-To-Ground” and is used to adjust the distance expressed on the map surface and convert to the position on the actual ground surface. This value is the product of the map scale factor and the height factor, ensuring the positioning measurements can be correctly placed on a map and on the ground. The combined factor is similar to linear distortion in that it is evaluated at the ground, but, as discussed in the next section, differs numerically. Often C_F is scrutinized for map projection optimization. Linear distortion, δ - In keeping with the design definitions of SPCS2022 (Dennis 2023), we refer to scale error when discussing the lunar reference sphere and linear distortion, δ, when discussing the topographic surface. Linear distortion is calculated using C_F simply by subtracting 1. Distances are expended on the topographic surface when δ is positive and compressed when δ is negative. The relevant files associated with the expressed LTM distortion are as follows. The scale factor for the 90 LTM projections: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_K_grid_scale_factor.tif Height Factor for the LTM portion of the Moon: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_EF_elevation_factor.tif Combined Factor in LTM portion of the Moon LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_CF_combined_factor.tif The relevant files associated with the expressed LPS distortion are as follows. Lunar North Pole The scale factor for the northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the north pole of the Moon: LUNAR_LGRS_NP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_CF_combined_factor.tif Lunar South Pole Scale factor for the northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the south pole of the Moon: LUNAR_LGRS_SP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_CF_combined_factor.tif For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude, referred to as “Display Only”, please utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. Raster data was calculated using planetocentric latitude and longitude. A LTM and LPS projection or a registered lunar GCS may be utilized to display this data. Note: All data, shapefiles and rasters, require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).
Facebook
TwitterGeoJunxion‘s ZIP+4 is a complete dataset based on US postal data consisting of plus 35 millions of polygons. The dataset is NOT JUST a table of spot data, which can be downloaded as csv or other text file as it happens with other suppliers. The data can be delivered as shapefile through a single RAW data delivery or through an API.
The January 2021 USPS data source has significantly changed since the previous delivery. Some States have sizably lower ZIP+4 totals across all counties when compared with previous deliveries due to USPS parcelpoint cleanup, while other States have a significant increase in ZIP+4 totals across all counties due to cleanup and other rezoning. California and North Carolina in particular have several new ZIP5s, contributing to the increase in distinct ZIPs and ZIP+4s.
GeoJunxion‘s ZIP+4 data can be used as an additional layer on an existing map to run customer or other analysis, e.g. who is my customer who not, what is the density of my customer base in a certain ZIP+4 etc.
Information can be put into visual context, due to the polygons, which is good for complex overviews or management decisions. CRM data can be enriched with the ZIP+4 to have more detailed customer information.
Key specifications:
Topologized ZIP polygons
GeoJunxion ZIP+4 polygons follow USPS postal codes
ZIP+4 code polygons:
ZIP5 attributes
State codes.
Overlapping ZIP+4
boundaries for multiple ZIP+4 addresses on one area
Updated USPS source (January 2021)
Distinct ZIP5 codes: 34 731
Distinct ZIP+4 codes: 35 146 957
The ZIP + 4 polygons are delivered in Esri shapefile format. This format allows the storage of geometry and attribute information for each of the features.
The four components for the shapefile data are:
.shp – This file stores the geometry of the feature
.shx –This file stores an index that stores the feature geometry
.dbf –This file stores attribute information relating to individual features
.prj –This file stores projection information associated with features
Current release version 2021. Earlier versions from previous years available on request.
Facebook
TwitterThis data set provides a grid of quads and projection information to be used for rover operations and the informal geographic naming convention for the regional geography of Oxia Planum. Both subject to update prior to the landed mission.Contents This data set contains 4 shapefiles and 1 zipped folder.OxiaPlanum_GeographicFeatures_2021_08_26. Point shapefile with the names of geographic features last updated at the date indicatedOxiaPlanum_GeographicRegions_2021_08_26. Polygon shapefile with the outlines of geographic regions fitted to the master quad grid and last updated at the date indicated.OxiaPlanum_QuadGrid_1km. Polygon shapefile of 1km quad that will be used for ExoMars rover missionOxiaPlanum_Origin_clong_335_45E_18_20N. The center point of the Oxia Planum as defined by the Rover Operations and Control center and origin point used for the Quad gridCRS_PRJ_Equirectangular_OxiaPlanum_Mars2000.zip. Zip folder containing the projection information use for all the data associated with this study. These are saved in the ESRI projection (.prj) and well know text formal (.wkt)Guide to individual filesFile name (example) Description OxiaPlanum_QuadGrid_1km.cpg Text display information OxiaPlanum_QuadGrid_1km.dbf Database file OxiaPlanum_QuadGrid_1km.prj Projection information OxiaPlanum_QuadGrid_1km.sbx Spatial index file OxiaPlanum_QuadGrid_1km.shp Shape file data <-Open this data in GiS with the other supporting files in the same directoryOxiaPlanum_QuadGrid_1km.shp.xml Symbolisation information OxiaPlanum_QuadGrid_1km.shx Geoprocessing history These data are provided with the following projection:Equirectangular_Mars_Oxia_Planum, Projection = Equidistant_Cylindrical, Datum = D_Mars_2000 Spheroid, Central meridian = 335.45Quad grid and contoursThe quad grid was created using the ArcPro 2.7 Grid Index Features Tool (Esri, 2021). The grid is a 121 × 120 array of 1000 m × 1000 m quads labelled ‘A1’ in the South West to ‘DP120’ in the North East. The grid covers the entire CTX mosaic and the lower left corner of quad BD50 coincides with the centre of the ROCC projection system at 335.45°E 18.20°N. Topographic contours were created at 25 m intervals from a CTX DEM down sampled to 100 m/pixel, with contours shorter than 1500 m in length were removed. Contours were smoothed using the PAEK algorithm at a tolerance of 200 m (USGS & MRCTR GIS Lab, 2018).Geographic regions A common geographical division and naming system for the Oxia Planum region is needed to allow ExoMars team members to communicate efficiently. Identifying and naming geographical locations and zones provides a spatial context for detailed observations, strategic planning and operations, and hypotheses testing. Differentiating geographic regionsWe divide Oxia Planum into 30 regions (Figure 2 and Table 3 from Fawdon et al 2021). This system of regions is a formalisation of the geographic differentiation demanded by discussions since the initial suggestion of Oxia Planum as a landing site in 2014 (ESA & The ExoMars 2018 Landing Site Selection Working Group (LSSWG), 2014) Each region is defined by a combination of topographic and or albedo changes in the HRSC and CTX data and that have needed to be talked about. Regions are smaller closer to the center of the landing site or where topography and albedo are more variable. This reflects the need to increase the fidelity of discussion where the rover is more likely to land or there are likely to have been more active geomorphic processes. As such these regions capture features pertaining to hypotheses about the paleo-environments being developed by the RSOWG and provide a natural framework to explore Oxia Planum. Naming geographic regionsThe regions were named in three ways: a number, a unique identifier, and a descriptive term. Unique identifiers were drawn from a list of Roman imperial and senatorial provinces at the largest geographic extent of the Roman empire in 117AD. This scheme was chosen because it has geographic and cultural ties throughout Europe and provides an appropriate number and variety of names. The descriptive terms (e.g., Planum, Lacus, etc) are those used in planetary toponomy (IAU, 1979). Names were selected to reflect the geography of the region (e.g., Caledonia has high elevation terrain in the northwest, Aegyptus has a large channel feature). Geographic locations within regions are also named. These names were drawn from a wider list of Roman towns or other relevant geographic locations with suitable, but process-agnostic, descriptive term (e.g., Alexandria Tholus named after the city in the ‘Aegyptus’ imperial province). These conventions have the capacity to expand this list as exploration of Oxia Planum continues.Although IAU recognised features (e.g., Malino crater) have also been included, all other names are informal. Informal naming of local features has been performed by previous Mars Rover mission teams. As has occurred during previous missions, some names will probably be replaced with formal IAU designations as the mission progresses.
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (sris_geology.gdb), a 10.1 ArcMap (.MXD) map document (sris_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chis_gis_readme.pdf). Please read the chis_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chis/sris_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Channel Islands National Park.
Facebook
TwitterThis layer is being made accessible on this platform as part of a larger collaborative project under development by Arizona Water Company, University of Arizona Water Resources Research Center, Babbitt Center for Land and Water Policy, and Center for Geospatial Solutions. This visualization for Pinal County expresses 2021 U.S. Census block, tract, and places data and the boundaries of the Active Management Areas and Pinal County within Arizona. All of these shapefiles have been altered for visualization purposes.The main sources of data present in this feature layer were taken from the following locations:U.S. Census Tiger/Line Shapefiles (2021)2021 TIGER/Line® Shapefiles (census.gov)The University of Arizona (2008)https://repository.arizona.edu/handle/10150/188734Arizona Department of Water Resources GIS Data (2021)https://gisdata2016-11-18t150447874z-azwater.opendata.arcgis.com/datasets/azwater::ama-and-ina-1/explore?location=34.158174%2C-111.970823%2C7.24These shapefiles were altered.
Facebook
TwitterThis layer is being made accessible on this platform as part of a larger collaborative project under development by Arizona Water Company, University of Arizona Water Resources Research Center, Babbitt Center for Land and Water Policy, and Center for Geospatial Solutions. This visualization for Pinal County expresses 2022 Assured and Adequate Water Supply (AAWS) data and Active Management Areas within Arizona. The AAWS shapefile was altered to display this information with the boundaries of Pinal County, Arizona.
The main sources of data present in this feature layer were taken from the following locations:Arizona Department of Water Resources (2022)https://gisdata2016-11-18t150447874z-azwater.opendata.arcgis.com/datasets/aaws-issued-determination/explore?location=34.152689%2C-112.003340%2C7.24The University of Arizonahttps://repository.arizona.edu/handle/10150/188734 (2008)Arizona Department of GIS data (2021):https://gisdata2016-11-18t150447874z-azwater.opendata.arcgis.com/datasets/azwater::ama-and-ina-1/explore?location=34.158174%2C-111.970823%2C7.24\
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (nava_geology.gdb), a 10.1 ArcMap (.mxd) map document (nava_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (nava_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (nava_geology_gis_readme.pdf). Please read the nava_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nava_geology_metadata.txt or nava_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Navajo National Monument.
Facebook
TwitterNew Jersey's canals and water raceways have been important for transportation and water power for the last 300 years. They have played a significant role in the economic development of the state. This product contains a Geographic Information System (GIS) ESRI polygon shapefile of the canals and raceways, with selected attributes. It also comes with an associated database file, projection file and metadata. The shapefile and metadata are compressed as a .zip file for download. This data shows locations of current and historic canals and raceways. Where possible, these have been mapped based on site visits or current aerial photographs. The location of some abandoned and filled canals and raceways are approximated from historic maps and photographs and are not guaranteed to be accurate. Some of the mapped canals and raceways are located on private property with no public access. Other canals and raceways allow public access on the canal itself or neighboring pathways, for recreational purposes. The user of this product is responsible for determining if a canal or raceway is open to the public before visiting. This data does not include dewatering canals and ditches with two exceptions, the Berry's Creek Canal and the Old Canal. They were included in this data because they are navigable. Channelized streams and underground aqueducts are not included in this shapefile. The New Jersey Geological Survey is interested in updating this product. Please send information on canals and raceways not shown here to njgsweb@dep.nj.gov. Please include specific site locations and, if possible, an aerial image or map.
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of the French Gulch 15' Quadrangle, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (freg_geology.gdb), a 10.1 ArcMap (.mxd) map document (freg_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (whis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (whis_geology_gis_readme.pdf). Please read the whis_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (freg_geology_metadata.txt or freg_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Whiskeytown National Recreation Area.
Facebook
TwitterThis dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
© MarineCadastre.gov This layer is a component of BOEMRE Layers.
This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.
For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov
The REST services for National Level Data can be found here:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer
REST services for regional level data can be found by clicking on the region of interest from the following URL:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE
Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL:
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx
Currently the following layers are available from this REST location:
OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.
OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.
OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.
BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.
BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.
Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.
Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip
BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest.
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.
BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Modeled ground magnetic data was extracted from the Pan American Center for Earth and Environmental Studies database at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was then imported into an Excel spreadsheet. This spreadsheet data was converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and magnetic field strength in nano-Teslas. This point shapefile was then interpolated to an ESRI grid using an inverse-distance weighting method, using ESRI Spatial Analyst. The grid was used to create a contour map of magnetic field strength.
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (mocr_geology.gdb), a 10.1 ArcMap (.mxd) map document (mocr_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (mocr_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (mocr_geology_gis_readme.pdf). Please read the mocr_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mocr_geology_metadata.txt or mocr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Moores Creek National Battlefield.
Facebook
TwitterThis dataset provides locations and technical specifications of wind turbines in the United States, almost all of which are utility-scale. Utility-scale turbines are ones that generate power and feed it into the grid, supplying a utility with energy. They are usually much larger than turbines that would feed a homeowner or business.
The data formats downloadable from the Minnesota Geospatial Commons contain just the Minnesota turbines. Data, maps and services accessed from the USWTDB website provide nationwide turbines.
The regularly updated database has wind turbine records that have been collected, digitized, and locationally verified. Turbine data were gathered from the Federal Aviation Administration's (FAA) Digital Obstacle File (DOF) and Obstruction Evaluation Airport Airspace Analysis (OE-AAA), the American Wind Energy Association (AWEA), Lawrence Berkeley National Laboratory (LBNL), and the United States Geological Survey (USGS), and were merged and collapsed into a single data set.
Verification of the turbine positions was done by visual interpretation using high-resolution aerial imagery in Esri ArcGIS Desktop. A locational error of plus or minus 10 meters for turbine locations was tolerated. Technical specifications for turbines were assigned based on the wind turbine make and models as provided by manufacturers and project developers directly, and via FAA datasets, information on the wind project developer or turbine manufacturer websites, or other online sources. Some facility and turbine information on make and model did not exist or was difficult to obtain. Thus, uncertainty may exist for certain turbine specifications. Similarly, some turbines were not yet built, not built at all, or for other reasons cannot be verified visually. Location and turbine specifications data quality are rated and a confidence is recorded for both. None of the data are field verified.
The U.S. Wind Turbine Database website provides the national data in many different formats: shapefile, CSV, GeoJSON, web services (cached and dynamic), API, and web viewer. See: https://eerscmap.usgs.gov/uswtdb/
The web viewer provides many options to search; filter by attribute, date and location; and customize the map display. For details and screenshots of these options, see: https://eerscmap.usgs.gov/uswtdb/help/
------------
This metadata record was adapted by the Minnesota Geospatial Information Office (MnGeo) from the national version of the metadata. It describes the Minnesota extract of the shapefile data that has been projected from geographic to UTM coordinates and converted to Esri file geodatabase (fgdb) format. There may be more recent updates available on the national website. Accessing the data via the national web services or API will always provide the most recent data.
Facebook
TwitterThe TIGER/Line shapefilez and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.
The TIGER/Line shapefiles include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population.
The boundaries of most incorporated places in this shapefile are as of January 1, 2015, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CDPs were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.
Facebook
Twitterdescription: The Unpublished Digital Geologic Map of Santa Monica Mountains National Recreation Area and Vicinity, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (samo_geology.gdb), a 10.1 ArcMap (.MXD) map document (samo_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (samo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (samo_gis_readme.pdf). Please read the samo_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie OMeara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (samo_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/samo/samo_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 11N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Santa Monica Mountains National Recreation Area.; abstract: The Unpublished Digital Geologic Map of Santa Monica Mountains National Recreation Area and Vicinity, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (samo_geology.gdb), a 10.1 ArcMap (.MXD) map document (samo_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (samo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (samo_gis_readme.pdf). Please read the samo_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie OMeara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (samo_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/samo/samo_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 11N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Santa Monica Mountains National Recreation Area.
Facebook
TwitterThe Unpublished Digital Geomorphic Map of the Shackleford Banks, North Carolina is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (shkb_geology.gdb), a 10.1 ArcMap (.MXD) map document (shkb_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (shkb_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (calo_gis_readme.pdf). Please read the calo_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O Meara (stephanie.o meara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (shkb_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/calo/shkb_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 5.1 meters or 16.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.2. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Cape Lookout National Seashore.
Facebook
TwitterDownload high-quality, up-to-date United Arab Emirates shapefile boundaries (SHP, projection system SRID 4326). Our United Arab Emirates Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Facebook
TwitterDownload high-quality, up-to-date shapefile boundaries (SHP, projection system SRID 4326). Our Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.