6 datasets found
  1. T

    Portugal Unemployment Rate

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Portugal Unemployment Rate [Dataset]. https://tradingeconomics.com/portugal/unemployment-rate
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1998 - May 31, 2025
    Area covered
    Portugal
    Description

    Unemployment Rate in Portugal remained unchanged at 6.30 percent in May. This dataset provides - Portugal Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. Bank marketing campaigns dataset | Opening Deposit

    • kaggle.com
    Updated Jan 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VolodymyrGavrysh (2020). Bank marketing campaigns dataset | Opening Deposit [Dataset]. https://www.kaggle.com/volodymyrgavrysh/bank-marketing-campaigns-dataset/kernels
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 12, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    VolodymyrGavrysh
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Bank marketing campaigns dataset analysis # Opening a Term Deposit

    It is a dataset that describing Portugal bank marketing campaigns results. Conducted campaigns were based mostly on direct phone calls, offering bank client to place a term deposit. If after all marking afforts client had agreed to place deposit - target variable marked 'yes', otherwise 'no'

    Sourse of the data https://archive.ics.uci.edu/ml/datasets/bank+marketing

    Citation Request:

    This dataset is public available for research. The details are described in S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014

    1. Title: Bank Marketing (with social/economic context)

    2. Sources Created by: Sérgio Moro (ISCTE-IUL), Paulo Cortez (Univ. Minho) and Paulo Rita (ISCTE-IUL) @ 2014

    3. Past Usage:

      The full dataset (bank-additional-full.csv) was described and analyzed in:

      S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems (2014), doi:10.1016/j.dss.2014.03.001.

    4. Relevant Information:

      This dataset is based on "Bank Marketing" UCI dataset (please check the description at: http://archive.ics.uci.edu/ml/datasets/Bank+Marketing). The data is enriched by the addition of five new social and economic features/attributes (national wide indicators from a ~10M population country), published by the Banco de Portugal and publicly available at: https://www.bportugal.pt/estatisticasweb. This dataset is almost identical to the one used in Moro et al., 2014. Using the rminer package and R tool (http://cran.r-project.org/web/packages/rminer/), we found that the addition of the five new social and economic attributes (made available here) lead to substantial improvement in the prediction of a success, even when the duration of the call is not included. Note: the file can be read in R using: d=read.table("bank-additional-full.csv",header=TRUE,sep=";")

    The binary classification goal is to predict if the client will subscribe a bank term deposit (variable y).

    1. Number of Instances: 41188 for bank-additional-full.csv

    2. Number of Attributes: 20 + output attribute.

    3. Attribute information:

      For more information, read [Moro et al., 2014].

      Input variables:

      bank client data:

      *1 - age (numeric)

      *2 - job : type of job (categorical: "admin.","blue-collar","entrepreneur","housemaid","management","retired","self-employed","services","student","technician","unemployed","unknown")

      *3 - marital : marital status (categorical: "divorced","married","single","unknown"; note: "divorced" means divorced or widowed)

      *4 - education (categorical: "basic.4y","basic.6y","basic.9y","high.school","illiterate","professional.course","university.degree","unknown")

      • 5 - default: has credit in default? (categorical: "no","yes","unknown")

      • 6 - housing: has housing loan? (categorical: "no","yes","unknown")

      • 7 - loan: has personal loan? (categorical: "no","yes","unknown")

      related with the last contact of the current campaign:

      • 8 - contact: contact communication type (categorical: "cellular","telephone")

      *9 - month: last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec")

      *10 - day_of_week: last contact day of the week (categorical: "mon","tue","wed","thu","fri")

      *11 - duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y="no"). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.

      other attributes:

      *12 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)

      *13 - pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)

      *14 - previous: number of contacts performed before this campaign and for this client (numeric)

      1515 - poutcome: outcome of the previous marketing campaign (categorical: "failure","nonexistent","success")

      social and economic context attributes

      *16 - emp.var.rate: employment variation rate - quarterly indicator (numeric)

      *17 - cons.price.idx: consumer price index - monthly indicator (numeric)

      *18 - cons.conf.idx: consumer confidence index - monthly indicator (numeric)

      *19 - euribor3m: euribor 3 month rate - daily indicator (numeric)

      • 20 - nr.employed: number of employees - quarterly indicator (numeric)

      Output variable (desired target): * 21 - y - h...

  3. Z

    Data from: DATABASE FOR THE ANALYSIS OF ROAD ACCIDENTS IN EUROPE

    • data.niaid.nih.gov
    • produccioncientifica.ugr.es
    • +2more
    Updated Oct 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    José Navarro-Moreno (2022). DATABASE FOR THE ANALYSIS OF ROAD ACCIDENTS IN EUROPE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7253071
    Explore at:
    Dataset updated
    Oct 26, 2022
    Dataset provided by
    José Navarro-Moreno
    Juan de Oña
    Francisco Calvo-Poyo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    This database that can be used for macro-level analysis of road accidents on interurban roads in Europe. Through the variables it contains, road accidents can be explained using variables related to economic resources invested in roads, traffic, road network, socioeconomic characteristics, legislative measures and meteorology. This repository contains the data used for the analysis carried out in the papers:

    1. Calvo-Poyo F., Navarro-Moreno J., de Oña J. (2020) Road Investment and Traffic Safety: An International Study. Sustainability 12:6332. https://doi.org/10.3390/su12166332

    2. Navarro-Moreno J., Calvo-Poyo F., de Oña J. (2022) Influence of road investment and maintenance expenses on injured traffic crashes in European roads. Int J Sustain Transp 1–11. https://doi.org/10.1080/15568318.2022.2082344

    3. Navarro-Moreno, J., Calvo-Poyo, F., de Oña, J. (2022) Investment in roads and traffic safety: linked to economic development? A European comparison. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-22567

    The file with the database is available in excel.

    DATA SOURCES

    The database presents data from 1998 up to 2016 from 20 european countries: Austria, Belgium, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden and United Kingdom. Crash data were obtained from the United Nations Economic Commission for Europe (UNECE) [2], which offers enough level of disaggregation between crashes occurring inside versus outside built-up areas.

    With reference to the data on economic resources invested in roadways, deserving mention –given its extensive coverage—is the database of the Organisation for Economic Cooperation and Development (OECD), managed by the International Transport Forum (ITF) [1], which collects data on investment in the construction of roads and expenditure on their maintenance, following the definitions of the United Nations System of National Accounts (2008 SNA). Despite some data gaps, the time series present consistency from one country to the next. Moreover, to confirm the consistency and complete missing data, diverse additional sources, mainly the national Transport Ministries of the respective countries were consulted. All the monetary values were converted to constant prices in 2015 using the OECD price index.

    To obtain the rest of the variables in the database, as well as to ensure consistency in the time series and complete missing data, the following national and international sources were consulted:

    Eurostat [3]

    Directorate-General for Mobility and Transport (DG MOVE). European Union [4]

    The World Bank [5]

    World Health Organization (WHO) [6]

    European Transport Safety Council (ETSC) [7]

    European Road Safety Observatory (ERSO) [8]

    European Climatic Energy Mixes (ECEM) of the Copernicus Climate Change [9]

    EU BestPoint-Project [10]

    Ministerstvo dopravy, República Checa [11]

    Bundesministerium für Verkehr und digitale Infrastruktur, Alemania [12]

    Ministerie van Infrastructuur en Waterstaat, Países Bajos [13]

    National Statistics Office, Malta [14]

    Ministério da Economia e Transição Digital, Portugal [15]

    Ministerio de Fomento, España [16]

    Trafikverket, Suecia [17]

    Ministère de l’environnement de l’énergie et de la mer, Francia [18]

    Ministero delle Infrastrutture e dei Trasporti, Italia [19–25]

    Statistisk sentralbyrå, Noruega [26-29]

    Instituto Nacional de Estatística, Portugal [30]

    Infraestruturas de Portugal S.A., Portugal [31–35]

    Road Safety Authority (RSA), Ireland [36]

    DATA BASE DESCRIPTION

    The database was made trying to combine the longest possible time period with the maximum number of countries with complete dataset (some countries like Lithuania, Luxemburg, Malta and Norway were eliminated from the definitive dataset owing to a lack of data or breaks in the time series of records). Taking into account the above, the definitive database is made up of 19 variables, and contains data from 20 countries during the period between 1998 and 2016. Table 1 shows the coding of the variables, as well as their definition and unit of measure.

    Table. Database metadata

    Code

    Variable and unit

    fatal_pc_km

    Fatalities per billion passenger-km

    fatal_mIn

    Fatalities per million inhabitants

    accid_adj_pc_km

    Accidents per billion passenger-km

    p_km

    Billions of passenger-km

    croad_inv_km

    Investment in roads construction per kilometer, €/km (2015 constant prices)

    croad_maint_km

    Expenditure on roads maintenance per kilometer €/km (2015 constant prices)

    prop_motorwa

    Proportion of motorways over the total road network (%)

    populat

    Population, in millions of inhabitants

    unemploy

    Unemployment rate (%)

    petro_car

    Consumption of gasolina and petrol derivatives (tons), per tourism

    alcohol

    Alcohol consumption, in liters per capita (age > 15)

    mot_index

    Motorization index, in cars per 1,000 inhabitants

    den_populat

    Population density, inhabitants/km2

    cgdp

    Gross Domestic Product (GDP), in € (2015 constant prices)

    cgdp_cap

    GDP per capita, in € (2015 constant prices)

    precipit

    Average depth of rain water during a year (mm)

    prop_elder

    Proportion of people over 65 years (%)

    dps

    Demerit Point System, dummy variable (0: no; 1: yes)

    freight

    Freight transport, in billions of ton-km

    ACKNOWLEDGEMENTS

    This database was carried out in the framework of the project “Inversión en carreteras y seguridad vial: un análisis internacional (INCASE)”, financed by: FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación/Proyecto RTI2018-101770-B-I00, within Spain´s National Program of R+D+i Oriented to Societal Challenges.

    Moreover, the authors would like to express their gratitude to the Ministry of Transport, Mobility and Urban Agenda of Spain (MITMA), and the Federal Ministry of Transport and Digital Infrastructure of Germany (BMVI) for providing data for this study.

    REFERENCES

    1. International Transport Forum OECD iLibrary | Transport infrastructure investment and maintenance.

    2. United Nations Economic Commission for Europe UNECE Statistical Database Available online: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT_40-TRTRANS/?rxid=18ad5d0d-bd5e-476f-ab7c-40545e802eeb (accessed on Apr 28, 2020).

    3. European Commission Database - Eurostat Available online: https://ec.europa.eu/eurostat/data/database (accessed on Apr 28, 2021).

    4. Directorate-General for Mobility and Transport. European Commission EU Transport in figures - Statistical Pocketbooks Available online: https://ec.europa.eu/transport/facts-fundings/statistics_en (accessed on Apr 28, 2021).

    5. World Bank Group World Bank Open Data | Data Available online: https://data.worldbank.org/ (accessed on Apr 30, 2021).

    6. World Health Organization (WHO) WHO Global Information System on Alcohol and Health Available online: https://apps.who.int/gho/data/node.main.GISAH?lang=en (accessed on Apr 29, 2021).

    7. European Transport Safety Council (ETSC) Traffic Law Enforcement across the EU - Tackling the Three Main Killers on Europe’s Roads; Brussels, Belgium, 2011;

    8. Copernicus Climate Change Service Climate data for the European energy sector from 1979 to 2016 derived from ERA-Interim Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-european-energy-sector?tab=overview (accessed on Apr 29, 2021).

    9. Klipp, S.; Eichel, K.; Billard, A.; Chalika, E.; Loranc, M.D.; Farrugia, B.; Jost, G.; Møller, M.; Munnelly, M.; Kallberg, V.P.; et al. European Demerit Point Systems : Overview of their main features and expert opinions. EU BestPoint-Project 2011, 1–237.

    10. Ministerstvo dopravy Serie: Ročenka dopravy; Ročenka dopravy; Centrum dopravního výzkumu: Prague, Czech Republic;

    11. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2003/2004; Hamburg, Germany, 2004; ISBN 3871542946.

    12. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2018/2019. In Verkehrsdynamik; Flensburg, Germany, 2018 ISBN 9783000612947.

    13. Ministerie van Infrastructuur en Waterstaat Rijksjaarverslag 2018 a Infrastructuurfonds; The Hague, Netherlands, 2019; ISBN 0921-7371.

    14. Ministerie van Infrastructuur en Milieu Rijksjaarverslag 2014 a Infrastructuurfonds; The Hague, Netherlands, 2015; ISBN 0921- 7371.

    15. Ministério da Economia e Transição Digital Base de Dados de Infraestruturas - GEE Available online: https://www.gee.gov.pt/pt/publicacoes/indicadores-e-estatisticas/base-de-dados-de-infraestruturas (accessed on Apr 29, 2021).

    16. Ministerio de Fomento. Dirección General de Programación Económica y Presupuestos. Subdirección General de Estudios Económicos y Estadísticas Serie: Anuario estadístico; NIPO 161-13-171-0; Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento: Madrid, Spain;

    17. Trafikverket The Swedish Transport Administration Annual report: 2017; 2018; ISBN 978-91-7725-272-6.

    18. Ministère de l’Équipement, du T. et de la M. Mémento de statistiques des transports 2003; Ministère de l’environnement de l’énergie et de la mer, 2005;

    19. Ministero delle Infrastrutture e dei Trasporti Conto Nazionale delle

  4. T

    Portugal Harmonised Inflation Rate YoY

    • pl.tradingeconomics.com
    • it.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Portugal Harmonised Inflation Rate YoY [Dataset]. https://pl.tradingeconomics.com/portugal/harmonised-inflation-rate-yoy
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1990 - Apr 30, 2025
    Area covered
    Portugalia
    Description

    Wskaźnik harmonizowanego wskaźnika inflacji rok do roku w Portugalii wzrósł do 2,10 procent w kwietniu z 1,90 procent w marcu 2025 roku. Ta strona zawiera wykres z danymi historycznymi dla wskaźnika Harmonizowanego wskaźnika inflacji w Portugalii rok do roku.

  5. T

    Portugal House Price Index YoY

    • pl.tradingeconomics.com
    • jp.tradingeconomics.com
    • +8more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Portugal House Price Index YoY [Dataset]. https://pl.tradingeconomics.com/portugal/house-price-index-yoy
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2010 - Dec 31, 2024
    Area covered
    Portugalia
    Description

    Wskaźnik cen nieruchomości rok do roku w Portugalii wzrósł do 9,80 procent w trzecim kwartale 2024 roku z 7,80 procent w drugim kwartale 2024 roku. Aktualne wartości, dane historyczne, prognozy, statystyki, wykresy i kalendarz ekonomiczny - Portugalia - Indeks Cen Domów r/r.

  6. T

    Portugal GDP Constant Prices

    • pl.tradingeconomics.com
    • tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Portugal GDP Constant Prices [Dataset]. https://pl.tradingeconomics.com/portugal/gdp-constant-prices
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1995 - Mar 31, 2025
    Area covered
    Portugalia
    Description

    PKB w stałych cenach w Portugalii spadł do 61020,80 mln EUR w pierwszym kwartale 2025 r. z poziomu 61350,40 mln EUR w czwartym kwartale 2024 r. Ta strona zawiera - PKB Portugalii w cenach stalych - wartosci aktualne, dane historyczne, prognozy, wykres, statystyki, kalendarz ekonomiczny i wiadomosci.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). Portugal Unemployment Rate [Dataset]. https://tradingeconomics.com/portugal/unemployment-rate

Portugal Unemployment Rate

Portugal Unemployment Rate - Historical Dataset (1998-02-28/2025-05-31)

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
excel, json, xml, csvAvailable download formats
Dataset updated
Jun 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Feb 28, 1998 - May 31, 2025
Area covered
Portugal
Description

Unemployment Rate in Portugal remained unchanged at 6.30 percent in May. This dataset provides - Portugal Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu