5 datasets found
  1. NFL Players Performance and Salary

    • kaggle.com
    zip
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). NFL Players Performance and Salary [Dataset]. https://www.kaggle.com/datasets/thedevastator/nfl-player-performance-and-salary-insights-2018
    Explore at:
    zip(100140 bytes)Available download formats
    Dataset updated
    Dec 4, 2022
    Authors
    The Devastator
    Description

    NFL Players Performance and Salary

    Uncover Trends, Make Predictions and Analyze Demographics

    By Ben Jones [source]

    About this dataset

    This Kaggle dataset contains unique and fascinating insights into the 2018-2019 season of the NFL. It provides comprehensive data such as player #, position, height, weight, age, experience level in years, college attended and the team they are playing for. All these attributes can be used to expand on research within the NFL community. From uncovering demographics of individual teams to discovering correlations between players' salaries and performance - this dataset has endless possibilities for researchers to dive deeply into. Whether you are searching for predictions about future seasons or creating complex analyses using this data - it will give you a detailed view of the 2018-2019 season like never before! Explore why each team is special, who shone individually that year and what strategies could have been employed more efficiently throughout with this captivating collection of 2019-2018 NFL Players Stats & Salaries!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Get familiar with the characteristics of each column in our data set: Rk, Player, Pos, Tm, Cap Hit Player # , HT , WT Age , Exp College Team Rk Tm . Understanding these columns is key for further analysis since you can use each attribute for unique insights about NFL players' salaries and performance during this season. For example, HT (height) and WT (weight) are useful information if you want to study any correlations between player body types and their salaries or game performances. Another example would be Pos (position); it is a critical factor that determines how much a team pays its players for specific roles on the field such as quarterbacks or running backs etc.
    • Use some visualizations on your data as it helps us better understand what we observe from statistical data points when placed into graphical forms like scatter plots or bar charts. Graphical representations are fantastic at helping us see correlations in our datasets; they let us draw conclusions quickly by comparing datasets side by side or juxtaposing various attributes together in order explore varying trends across different teams of players etc.. Additionally, you could also represent all 32 teams graphically according to their Cap Hits so that viewers can spot any outlier values quickly without having to scan a table full of numbers – map based visualizations come extremely handy here!
    • Employ analytical techniques such as regular expression matching (RegEx) if needed; RegEx enables us detect patterns within text fields within your datasets making them exceptionally useful when trying discovering insights from large strings like college team name URLSs [for example] . This could potentially lead you towards deeper exploration into why certain franchises may have higher salaried players than others etc..
    • Finally don't forget all mathematical tools available at your disposal; statistics involves sophisticated operations like proportions / ratios/ averages/ medians - be sure take advantage these basic math features because quite often they end up revealing dazzling new facets inside your datasets which help uncover more interesting connections & relationships between two separate entities such as how does height compare against drafted college etc..?

    We hope these tips help those looking forward unlocking hidden gems hidden

    Research Ideas

    • Analyzing the impact of position on salaries: This dataset can be used to compare salaries across different positions and analyze the correlations between players’ performance, experience, and salaries.
    • Predicting future NFL MVP candidates: By analyzing popular statistical categories such as passing yards, touchdowns, interceptions and rushing yards for individual players over several seasons, researchers could use this data to predict future NFL MVPs each season.
    • Exploring team demographics: By looking into individual teams' player statistics such as age, height and weight distribution, researchers can analyze and compare demographic trends across the league or within a single team during any given season

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even co...

  2. FiveThirtyEight NFL Fandom Dataset

    • kaggle.com
    zip
    Updated Mar 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight NFL Fandom Dataset [Dataset]. https://www.kaggle.com/fivethirtyeight/fivethirtyeight-nfl-fandom-dataset
    Explore at:
    zip(7472 bytes)Available download formats
    Dataset updated
    Mar 26, 2019
    Dataset authored and provided by
    FiveThirtyEighthttps://abcnews.go.com/538
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    NFL Fandom

    This folder contains data behind the story How Every NFL Team’s Fans Lean Politically.

    Google Trends Data

    Google Trends data was derived from comparing 5-year search traffic for the 7 sports leagues we analyzed:

    https://g.co/trends/5P8aa

    Results are listed by designated market area (DMA).

    The percentages are the approximate percentage of major-sports searches that were conducted for each league.

    Trump's percentage is his share of the vote within the DMA in the 2016 presidential election.

    SurveyMonkey Data

    SurveyMonkey data was derived from a poll of American adults ages 18 and older, conducted between Sept. 1-7, 2017.

    Listed numbers are the raw totals for respondents who ranked a given NFL team among their three favorites, and how many identified with a given party (further broken down by race). We also list the percentages of the entire sample that identified with each party, and were of each race.

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

  3. p

    Trends in Two or More Races Student Percentage (2016-2020): Nfl Yet College...

    • publicschoolreview.com
    Updated Sep 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2017). Trends in Two or More Races Student Percentage (2016-2020): Nfl Yet College Prep Academy vs. Arizona vs. Espiritu Community Development Corporation (4335) School District [Dataset]. https://www.publicschoolreview.com/nfl-yet-college-prep-academy-profile
    Explore at:
    Dataset updated
    Sep 24, 2017
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset tracks annual two or more races student percentage from 2016 to 2020 for Nfl Yet College Prep Academy vs. Arizona and Espiritu Community Development Corporation (4335) School District

  4. US state_trends.csv

    • kaggle.com
    zip
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ANKITHA SRIDHAR (2024). US state_trends.csv [Dataset]. https://www.kaggle.com/datasets/ankithasridhar/us-state-trends-csv
    Explore at:
    zip(64366 bytes)Available download formats
    Dataset updated
    Jan 18, 2024
    Authors
    ANKITHA SRIDHAR
    Area covered
    United States
    Description

    This dataset, named "state_trends.csv," contains information about different U.S. states. Let's break down the attributes and understand what each column represents:

    1. state: The name of the U.S. state.
    2. state_code: The two-letter postal code abbreviation for the state.
    3. population: The population of the state.
    4. sq_miles: The total land area of the state in square miles.
    5. pop_density: Population density, which is the number of people per square mile.
    6. region: The geographical region of the United States to which the state belongs (e.g., South, West).
    7. psych_region: A description of the psychological region based on personality traits.
    8. psy_reg: A shortened version of the psychological region.
    9. extraversion: A measure of the state's population tendency toward extraversion.
    10. agreeableness: A measure of the state's population tendency toward agreeableness.
    11. conscientiousness: A measure of the state's population tendency toward conscientiousness.
    12. neuroticism: A measure of the state's population tendency toward neuroticism.
    13. openness: A measure of the state's population tendency toward openness.
    14. data_science: A score related to the state's interest or proficiency in the field of data science.
    15. artificial_intelligence: A score related to the state's interest or proficiency in artificial intelligence.
    16. machine_learning: A score related to the state's interest or proficiency in machine learning.
    17. data_analysis: A score related to the state's interest or proficiency in data analysis.
    18. business_intelligence: A score related to the state's interest or proficiency in business intelligence.
    19. spreadsheet: A score related to the state's interest or proficiency in spreadsheet usage.
    20. statistics: A score related to the state's interest or proficiency in statistics.
    21. art: A score related to the state's interest or involvement in the field of art.
    22. dance: A score related to the state's interest or involvement in dance.
    23. museum: A score related to the state's interest or presence of museums.
    24. basketball: A score related to the state's interest or involvement in basketball.
    25. football: A score related to the state's interest or involvement in football.
    26. baseball: A score related to the state's interest or involvement in baseball.
    27. soccer: A score related to the state's interest or involvement in soccer.
    28. hockey: A score related to the state's interest or involvement in hockey.
    29. has_nba: Indicates whether the state has a National Basketball Association (NBA) team (Yes/No).
    30. has_nfl: Indicates whether the state has a National Football League (NFL) team (Yes/No).
    31. has_mlb: Indicates whether the state has a Major League Baseball (MLB) team (Yes/No).
    32. has_mls: Indicates whether the state has a Major League Soccer (MLS) team (Yes/No).
    33. has_nhl: Indicates whether the state has a National Hockey League (NHL) team (Yes/No).
    34. has_any: Indicates whether the state has any of the mentioned professional sports teams (Yes/No).

    In summary, this dataset provides a variety of information about U.S. states, including demographic data, geographical region, psychological region, personality traits, and scores related to interests or proficiencies in various fields such as data science, art, and sports.

  5. p

    Nfl Yet College Prep Academy

    • publicschoolreview.com
    json, xml
    Updated Sep 24, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2017). Nfl Yet College Prep Academy [Dataset]. https://www.publicschoolreview.com/nfl-yet-college-prep-academy-profile
    Explore at:
    json, xmlAvailable download formats
    Dataset updated
    Sep 24, 2017
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1998 - Dec 31, 2025
    Description

    Historical Dataset of Nfl Yet College Prep Academy is provided by PublicSchoolReview and contain statistics on metrics:Total Students Trends Over Years (1999-2023),Distribution of Students By Grade Trends,American Indian Student Percentage Comparison Over Years (2001-2023),Hispanic Student Percentage Comparison Over Years (1999-2023),Black Student Percentage Comparison Over Years (1999-2023),White Student Percentage Comparison Over Years (1999-2023),Two or More Races Student Percentage Comparison Over Years (2016-2020),Diversity Score Comparison Over Years (1998-2023),Free Lunch Eligibility Comparison Over Years (2004-2023),Reduced-Price Lunch Eligibility Comparison Over Years (2004-2023),Reading and Language Arts Proficiency Comparison Over Years (2011-2022),Math Proficiency Comparison Over Years (2012-2023),Overall School Rank Trends Over Years (2012-2023),Graduation Rate Comparison Over Years (2012-2023)

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2022). NFL Players Performance and Salary [Dataset]. https://www.kaggle.com/datasets/thedevastator/nfl-player-performance-and-salary-insights-2018
Organization logo

NFL Players Performance and Salary

Uncover Trends, Make Predictions and Analyze Demographics

Explore at:
zip(100140 bytes)Available download formats
Dataset updated
Dec 4, 2022
Authors
The Devastator
Description

NFL Players Performance and Salary

Uncover Trends, Make Predictions and Analyze Demographics

By Ben Jones [source]

About this dataset

This Kaggle dataset contains unique and fascinating insights into the 2018-2019 season of the NFL. It provides comprehensive data such as player #, position, height, weight, age, experience level in years, college attended and the team they are playing for. All these attributes can be used to expand on research within the NFL community. From uncovering demographics of individual teams to discovering correlations between players' salaries and performance - this dataset has endless possibilities for researchers to dive deeply into. Whether you are searching for predictions about future seasons or creating complex analyses using this data - it will give you a detailed view of the 2018-2019 season like never before! Explore why each team is special, who shone individually that year and what strategies could have been employed more efficiently throughout with this captivating collection of 2019-2018 NFL Players Stats & Salaries!

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

  • Get familiar with the characteristics of each column in our data set: Rk, Player, Pos, Tm, Cap Hit Player # , HT , WT Age , Exp College Team Rk Tm . Understanding these columns is key for further analysis since you can use each attribute for unique insights about NFL players' salaries and performance during this season. For example, HT (height) and WT (weight) are useful information if you want to study any correlations between player body types and their salaries or game performances. Another example would be Pos (position); it is a critical factor that determines how much a team pays its players for specific roles on the field such as quarterbacks or running backs etc.
  • Use some visualizations on your data as it helps us better understand what we observe from statistical data points when placed into graphical forms like scatter plots or bar charts. Graphical representations are fantastic at helping us see correlations in our datasets; they let us draw conclusions quickly by comparing datasets side by side or juxtaposing various attributes together in order explore varying trends across different teams of players etc.. Additionally, you could also represent all 32 teams graphically according to their Cap Hits so that viewers can spot any outlier values quickly without having to scan a table full of numbers – map based visualizations come extremely handy here!
  • Employ analytical techniques such as regular expression matching (RegEx) if needed; RegEx enables us detect patterns within text fields within your datasets making them exceptionally useful when trying discovering insights from large strings like college team name URLSs [for example] . This could potentially lead you towards deeper exploration into why certain franchises may have higher salaried players than others etc..
  • Finally don't forget all mathematical tools available at your disposal; statistics involves sophisticated operations like proportions / ratios/ averages/ medians - be sure take advantage these basic math features because quite often they end up revealing dazzling new facets inside your datasets which help uncover more interesting connections & relationships between two separate entities such as how does height compare against drafted college etc..?

We hope these tips help those looking forward unlocking hidden gems hidden

Research Ideas

  • Analyzing the impact of position on salaries: This dataset can be used to compare salaries across different positions and analyze the correlations between players’ performance, experience, and salaries.
  • Predicting future NFL MVP candidates: By analyzing popular statistical categories such as passing yards, touchdowns, interceptions and rushing yards for individual players over several seasons, researchers could use this data to predict future NFL MVPs each season.
  • Exploring team demographics: By looking into individual teams' player statistics such as age, height and weight distribution, researchers can analyze and compare demographic trends across the league or within a single team during any given season

Acknowledgements

If you use this dataset in your research, please credit the original authors. Data Source

License

License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even co...

Search
Clear search
Close search
Google apps
Main menu