Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive information on sex ratios at birth across different countries and regions from 1950 to 2023. It contains 18,944 observations from the United Nations World Population Prospects, offering researchers and demographers valuable insights into gender demographics and potential societal influences on birth sex ratios. The dataset enables analysis of deviations from the biological norm of 105 males per 100 females at birth.
Key features include:
This dataset is ideal for:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.
Key observations
Largest age group (population): Male # 55-59 years (337) | Female # 50-54 years (448). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Earth. The dataset can be utilized to understand the population distribution of Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Earth.
Key observations
Largest age group (population): Male # 65-69 years (51) | Female # 10-14 years (76). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth Population by Gender. You can refer the same here
https://data.gov.tw/licensehttps://data.gov.tw/license
This dataset contains the analysis of the number of male and female recipients of the Global Young Business Potential Star on six continents since 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Blue Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Blue Earth. The dataset can be utilized to understand the population distribution of Blue Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Blue Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Blue Earth.
Key observations
Largest age group (population): Male # 40-44 years (125) | Female # 85+ years (156). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jordan JO: Sex Ratio at Birth: Male Births per Female Births data was reported at 1.054 Ratio in 2016. This stayed constant from the previous number of 1.054 Ratio for 2015. Jordan JO: Sex Ratio at Birth: Male Births per Female Births data is updated yearly, averaging 1.054 Ratio from Dec 1962 (Median) to 2016, with 20 observations. The data reached an all-time high of 1.054 Ratio in 2016 and a record low of 1.054 Ratio in 2016. Jordan JO: Sex Ratio at Birth: Male Births per Female Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Jordan – Table JO.World Bank: Population and Urbanization Statistics. Sex ratio at birth refers to male births per female births. The data are 5 year averages.; ; United Nations Population Division. World Population Prospects: 2017 Revision.; Weighted average;
Series Name: Sex ratio (males per 100 females)Publication Year: 2018 The Statistical Yearbook provides in a single volume a comprehensive compilation of internationally available statistics on social and economic conditions and activities, at world, regional and national levels, for an appropriate historical period. It is prepared by the Statistics Division, Department of Economic and Social Affairs, of the United Nations Secretariat.Table: Population, density and surface areaTopic: Population and migrationFor more information on the compilation methodology of this dataset, see https://unstats.un.org/unsd/publications/statistical-yearbook/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Labour Force Participation Rate: Modeled ILO Estimate: Ratio of Female to Male data was reported at 81.641 % in 2017. This records a decrease from the previous number of 81.668 % for 2016. United States US: Labour Force Participation Rate: Modeled ILO Estimate: Ratio of Female to Male data is updated yearly, averaging 80.555 % from Dec 1990 (Median) to 2017, with 28 observations. The data reached an all-time high of 82.223 % in 2010 and a record low of 74.649 % in 1990. United States US: Labour Force Participation Rate: Modeled ILO Estimate: Ratio of Female to Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Labour Force. Labor force participation rate is the proportion of the population ages 15 and older that is economically active: all people who supply labor for the production of goods and services during a specified period. Ratio of female to male labor force participation rate is calculated by dividing female labor force participation rate by male labor force participation rate and multiplying by 100.; ; Derived using data from International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average; Data up to 2016 are estimates while data from 2017 are projections. National estimates are also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
The difference between the earnings of women and men shrank slightly over the past years. Considering the controlled gender pay gap, which measures the median salary for men and women with the same job and qualifications, women earned one U.S. cent less. By comparison, the uncontrolled gender pay gap measures the median salary for all men and all women across all sectors and industries and regardless of location and qualification. In 2025, the uncontrolled gender pay gap in the world stood at 0.83, meaning that women earned 0.83 dollars for every dollar earned by men.
The global gender gap index benchmarks national gender gaps on economic, political, education, and health-based criteria. In 2025, the country offering the most gender equal conditions was Iceland, with a score of 0.93. Overall, the Nordic countries make up 3 of the 5 most gender equal countries worldwide. The Nordic countries are known for their high levels of gender equality, including high female employment rates and evenly divided parental leave. Sudan is the second-least gender equal country Pakistan is found on the other end of the scale, ranked as the least gender equal country in the world. Conditions for civilians in the North African country have worsened significantly after a civil war broke out in April 2023. Especially girls and women are suffering and have become victims of sexual violence. Moreover, nearly 9 million people are estimated to be at acute risk of famine. The Middle East and North Africa have the largest gender gap Looking at the different world regions, the Middle East and North Africa have the largest gender gap as of 2023, just ahead of South Asia. Moreover, it is estimated that it will take another 152 years before the gender gap in the Middle East and North Africa is closed. On the other hand, Europe has the lowest gender gap in the world.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
General information
This data is supplementary material to the paper by Watson et al. on sex differences in global reporting of adverse drug reactions [1]. Readers are referred to this paper for a detailed description of the context in which the data was generated. Anyone intending to use this data for any purpose should read the publicly available information on the VigiBase source data [2, 3]. The conditions specified in the caveat document [3] must be adhered to.
Source dataset
The dataset published here is based on analyses performed in VigiBase, the WHO global database of individual case safety reports [4]. All reports entered into VigiBase from its inception in 1967 up to 2 January 2018 with patient sex coded as either female or male have been included, except suspected duplicate reports [5]. In total, the source dataset contained 9,056,566 female and 6,012,804 male reports.
Statistical analysis
The characteristics of the female reports were compared to those of the male reports using a method called vigiPoint [6]. This is a method for comparing two or more sets of reports (here female and male reports) on a large set of reporting variables, and highlight any feature in which the sets are different in a statistically and clinically relevant manner. For example, patient age group is a reporting variable, and the different age groups 0 - 27 days, 28 days - 23 months et cetera are features within this variable. The statistical analysis is based on shrinkage log odds ratios computed as a comparison between the two sets of reports for each feature, including all reports without missing information for the variable under consideration. The specific output from vigiPoint is defined precisely below. Here, the results for 18 different variables with a total of 44,486 features are presented. 74 of these features were highlighted as so called vigiPoint key features, suggesting a statistically and clinically significant difference between female and male reports in VigiBase.
Description of published dataset
The dataset is provided in the form of a MS Excel spreadsheet (.xlsx file) with nine columns and 44,486 rows (excluding the header), each corresponding to a specific feature. Below follows a detailed description of the data included in the different columns.
Variable: This column indicates the reporting variable to which the specific feature belongs. Six of these variables are described in the original publication by Watson et al.: country of origin, geographical region of origin, type of reporter, patient age group, MedDRA SOC, ATC level 2 of reported drugs, seriousness, and fatality [1]. The remaining 12 are described here:
The Variable column can be useful for filtering the data, for example if one is interested in one or a few specific variables.
Feature: This column contains each of the 44,486 included features. The vast majority should be self-explanatory, or else they have been explained above, or in the original paper [1].
Female reports and Male reports: These columns show the number of female and male reports, respectively, for which the specific feature is present.
Proportion among female reports and Proportion among male reports: These columns show the proportions within the female and male reports, respectively, for which the specific feature is present. Comparing these crude proportions is the simplest and most intuitive way to contrast the female and male reports, and a useful complement to the specific vigiPoint output.
Odds ratio: The odds ratio is a basic measure of association between the classification of reports into female and male reports and a given reporting feature, and hence can be used to compare female and male reports with respect to this feature. It is formally defined as a / (bc / d), where
This crude odds ratio can also be computed as (pfemale / (1-pfemale)) / (pmale / (1-pmale)), where pfemale and pmale are the proportions described earlier. If the odds ratio is above 1, the feature is more common among the female than the male reports; if below 1, the feature is less common among the female than the male reports. Note that the odds ratio can be mathematically undefined, in which case it is missing in the published data.
vigiPoint score: This score is defined based on an odds ratio with added statistical shrinkage, defined as (a + k) / ((bc / d) + k), where k is 1% of the total number of female reports, or about 9,000. While the shrinkage adds robustness to the measure of association, it makes interpretation more difficult, which is why the crude proportions and unshrunk odds ratios are also presented. Further, 99% credibility intervals are computed for the shrinkage odds ratios, and these intervals are transformed onto a log2 scale [6]. The vigiPoint score is then defined as the lower endpoint of the interval, if that endpoint is above 0; as the higher endpoint of the interval, if that endpoint is below 0; and otherwise as 0. The vigiPoint score is useful for sorting the features from strongest positive to strongest negative associations, and/or to filter the features according to some user-defined criteria.
vigiPoint key feature: Features are classified as vigiPoint key features if their vigiPoint score is either above 0.5 or below -0.5. The specific thereshold of 0.5 is arbitrary, but chosen to identify features where the two sets of reports (here female and male reports) differ in a clinically significant way.
References
Series Name: Gender parity index for participation rate in formal and non-formal education and training (ratio)Series Code: SE_GPI_PARTRelease Version: 2020.Q2.G.03This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 4.5.1: Parity indices (female/male, rural/urban, bottom/top wealth quintile and others such as disability status, indigenous peoples and conflict-affected, as data become available) for all education indicators on this list that can be disaggregatedTarget 4.5: By 2030, eliminate gender disparities in education and ensure equal access to all levels of education and vocational training for the vulnerable, including persons with disabilities, indigenous peoples and children in vulnerable situationsGoal 4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for allFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Labour Force Participation Rate: National Estimate: Ratio of Female to Male data was reported at 84.557 % in 2023. This records an increase from the previous number of 84.326 % for 2022. Germany DE: Labour Force Participation Rate: National Estimate: Ratio of Female to Male data is updated yearly, averaging 76.088 % from Dec 1983 (Median) to 2023, with 41 observations. The data reached an all-time high of 84.557 % in 2023 and a record low of 57.039 % in 1983. Germany DE: Labour Force Participation Rate: National Estimate: Ratio of Female to Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Labour Force. Labor force participation rate is the proportion of the population ages 15 and older that is economically active: all people who supply labor for the production of goods and services during a specified period. Ratio of female to male labor force participation rate is calculated by dividing female labor force participation rate by male labor force participation rate and multiplying by 100.;World Bank, World Development Indicators database. Estimates are based on data obtained from International Labour Organization, ILOSTAT at https://ilostat.ilo.org/data/.;Weighted average;The series for ILO estimates is also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Madagascar MG: Sex Ratio at Birth: Male Births per Female Births data was reported at 1.030 Ratio in 2016. This stayed constant from the previous number of 1.030 Ratio for 2015. Madagascar MG: Sex Ratio at Birth: Male Births per Female Births data is updated yearly, averaging 1.022 Ratio from Dec 1962 (Median) to 2016, with 20 observations. The data reached an all-time high of 1.030 Ratio in 2016 and a record low of 1.016 Ratio in 1997. Madagascar MG: Sex Ratio at Birth: Male Births per Female Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Madagascar – Table MG.World Bank: Population and Urbanization Statistics. Sex ratio at birth refers to male births per female births. The data are 5 year averages.; ; United Nations Population Division. World Population Prospects: 2017 Revision.; Weighted average;
In 2023, Mongolia had the highest share of women employed in science, technology, engineering, and mathematics (STEM) fields, with ** percent of all those employed in STEM fields being women. Belarus, Lesotho, the United States, and Barbados rounded out the top five countries employing the highest share of women in STEM fields.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Black Earth town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Black Earth town. The dataset can be utilized to understand the population distribution of Black Earth town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Black Earth town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Black Earth town.
Key observations
Largest age group (population): Male # 65-69 years (37) | Female # 50-54 years (31). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth town Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nicaragua NI: Sex Ratio at Birth: Male Births per Female Births data was reported at 1.050 Ratio in 2016. This stayed constant from the previous number of 1.050 Ratio for 2015. Nicaragua NI: Sex Ratio at Birth: Male Births per Female Births data is updated yearly, averaging 1.050 Ratio from Dec 1962 (Median) to 2016, with 20 observations. The data reached an all-time high of 1.050 Ratio in 2016 and a record low of 1.050 Ratio in 2016. Nicaragua NI: Sex Ratio at Birth: Male Births per Female Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nicaragua – Table NI.World Bank: Population and Urbanization Statistics. Sex ratio at birth refers to male births per female births. The data are 5 year averages.; ; United Nations Population Division. World Population Prospects: 2017 Revision.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spain ES: Sex Ratio at Birth: Male Births per Female Births data was reported at 1.064 Ratio in 2016. This stayed constant from the previous number of 1.064 Ratio for 2015. Spain ES: Sex Ratio at Birth: Male Births per Female Births data is updated yearly, averaging 1.064 Ratio from Dec 1962 (Median) to 2016, with 20 observations. The data reached an all-time high of 1.064 Ratio in 2016 and a record low of 1.064 Ratio in 2016. Spain ES: Sex Ratio at Birth: Male Births per Female Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Spain – Table ES.World Bank: Population and Urbanization Statistics. Sex ratio at birth refers to male births per female births. The data are 5 year averages.; ; United Nations Population Division. World Population Prospects: 2017 Revision.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Israel IL: Gender Parity Index (GPI): Tertiary School Enrollment: Gross data was reported at 1.399 Ratio in 2016. This records an increase from the previous number of 1.383 Ratio for 2015. Israel IL: Gender Parity Index (GPI): Tertiary School Enrollment: Gross data is updated yearly, averaging 1.184 Ratio from Dec 1971 (Median) to 2016, with 36 observations. The data reached an all-time high of 1.440 Ratio in 1999 and a record low of 0.847 Ratio in 1971. Israel IL: Gender Parity Index (GPI): Tertiary School Enrollment: Gross data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Israel – Table IL.World Bank.WDI: Education Statistics. Gender parity index for gross enrollment ratio in tertiary education is the ratio of women to men enrolled at tertiary level in public and private schools.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here