The number of Instagram users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 2.1 million users (+7.02 percent). After the ninth consecutive increasing year, the Instagram user base is estimated to reach 32 million users and therefore a new peak in 2028. Notably, the number of Instagram users of was continuously increasing over the past years.User figures, shown here with regards to the platform instagram, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The number of Pinterest users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 0.3 million users (+3.14 percent). After the ninth consecutive increasing year, the Pinterest user base is estimated to reach 9.88 million users and therefore a new peak in 2028. Notably, the number of Pinterest users of was continuously increasing over the past years.User figures, shown here regarding the platform pinterest, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The number of LinkedIn users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 1.5 million users (+4.51 percent). After the eighth consecutive increasing year, the LinkedIn user base is estimated to reach 34.7 million users and therefore a new peak in 2028. User figures, shown here with regards to the platform LinkedIn, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Premium B2C Consumer Database - 269+ Million US Records
Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.
Core Database Statistics
Consumer Records: Over 269 million
Email Addresses: Over 160 million (verified and deliverable)
Phone Numbers: Over 76 million (mobile and landline)
Mailing Addresses: Over 116,000,000 (NCOA processed)
Geographic Coverage: Complete US (all 50 states)
Compliance Status: CCPA compliant with consent management
Targeting Categories Available
Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)
Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options
Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics
Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting
Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting
Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors
Multi-Channel Campaign Applications
Deploy across all major marketing channels:
Email marketing and automation
Social media advertising
Search and display advertising (Google, YouTube)
Direct mail and print campaigns
Telemarketing and SMS campaigns
Programmatic advertising platforms
Data Quality & Sources
Our consumer data aggregates from multiple verified sources:
Public records and government databases
Opt-in subscription services and registrations
Purchase transaction data from retail partners
Survey participation and research studies
Online behavioral data (privacy compliant)
Technical Delivery Options
File Formats: CSV, Excel, JSON, XML formats available
Delivery Methods: Secure FTP, API integration, direct download
Processing: Real-time NCOA, email validation, phone verification
Custom Selections: 1,000+ selectable demographic and behavioral attributes
Minimum Orders: Flexible based on targeting complexity
Unique Value Propositions
Dual Spouse Targeting: Reach both household decision-makers for maximum impact
Cross-Platform Integration: Seamless deployment to major ad platforms
Real-Time Updates: Monthly data refreshes ensure maximum accuracy
Advanced Segmentation: Combine multiple targeting criteria for precision campaigns
Compliance Management: Built-in opt-out and suppression list management
Ideal Customer Profiles
E-commerce retailers seeking customer acquisition
Financial services companies targeting specific demographics
Healthcare organizations with compliant marketing needs
Automotive dealers and service providers
Home improvement and real estate professionals
Insurance companies and agents
Subscription services and SaaS providers
Performance Optimization Features
Lookalike Modeling: Create audiences similar to your best customers
Predictive Scoring: Identify high-value prospects using AI algorithms
Campaign Attribution: Track performance across multiple touchpoints
A/B Testing Support: Split audiences for campaign optimization
Suppression Management: Automatic opt-out and DNC compliance
Pricing & Volume Options
Flexible pricing structures accommodate businesses of all sizes:
Pay-per-record for small campaigns
Volume discounts for large deployments
Subscription models for ongoing campaigns
Custom enterprise pricing for high-volume users
Data Compliance & Privacy
VIA.tools maintains industry-leading compliance standards:
CCPA (California Consumer Privacy Act) compliant
CAN-SPAM Act adherence for email marketing
TCPA compliance for phone and SMS campaigns
Regular privacy audits and data governance reviews
Transparent opt-out and data deletion processes
Getting Started
Our data specialists work with you to:
Define your target audience criteria
Recommend optimal data selections
Provide sample data for testing
Configure delivery methods and formats
Implement ongoing campaign optimization
Why We Lead the Industry
With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.
Contact our team to discuss your specific ta...
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attac
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context and Aim
Deep learning in Earth Observation requires large image archives with highly reliable labels for model training and testing. However, a preferable quality standard for forest applications in Europe has not yet been determined. The TreeSatAI consortium investigated numerous sources for annotated datasets as an alternative to manually labeled training datasets.
We found the federal forest inventory of Lower Saxony, Germany represents an unseen treasure of annotated samples for training data generation. The respective 20-cm Color-infrared (CIR) imagery, which is used for forestry management through visual interpretation, constitutes an excellent baseline for deep learning tasks such as image segmentation and classification.
Description
The data archive is highly suitable for benchmarking as it represents the real-world data situation of many German forest management services. One the one hand, it has a high number of samples which are supported by the high-resolution aerial imagery. On the other hand, this data archive presents challenges, including class label imbalances between the different forest stand types.
The TreeSatAI Benchmark Archive contains:
50,381 image triplets (aerial, Sentinel-1, Sentinel-2)
synchronized time steps and locations
all original spectral bands/polarizations from the sensors
20 species classes (single labels)
12 age classes (single labels)
15 genus classes (multi labels)
60 m and 200 m patches
fixed split for train (90%) and test (10%) data
additional single labels such as English species name, genus, forest stand type, foliage type, land cover
The geoTIFF and GeoJSON files are readable in any GIS software, such as QGIS. For further information, we refer to the PDF document in the archive and publications in the reference section.
Version history
v1.0.2 - Minor bug fix multi label JSON file
v1.0.1 - Minor bug fixes in multi label JSON file and description file
v1.0.0 - First release
Citation
Ahlswede, S., Schulz, C., Gava, C., Helber, P., Bischke, B., Förster, M., Arias, F., Hees, J., Demir, B., and Kleinschmit, B.: TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing, Earth Syst. Sci. Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023, 2023.
GitHub
Full code examples and pre-trained models from the dataset article (Ahlswede et al. 2022) using the TreeSatAI Benchmark Archive are published on the GitLab and GitHub repositories of the Remote Sensing Image Analysis (RSiM) Group (https://git.tu-berlin.de/rsim/treesat_benchmark) and the Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) (https://github.com/DFKI/treesatai_benchmark). Code examples for the sampling strategy can be made available by Christian Schulz via email request.
Folder structure
We refer to the proposed folder structure in the PDF file.
Folder “aerial” contains the aerial imagery patches derived from summertime orthophotos of the years 2011 to 2020. Patches are available in 60 x 60 m (304 x 304 pixels). Band order is near-infrared, red, green, and blue. Spatial resolution is 20 cm.
Folder “s1” contains the Sentinel-1 imagery patches derived from summertime mosaics of the years 2015 to 2020. Patches are available in 60 x 60 m (6 x 6 pixels) and 200 x 200 m (20 x 20 pixels). Band order is VV, VH, and VV/VH ratio. Spatial resolution is 10 m.
Folder “s2” contains the Sentinel-2 imagery patches derived from summertime mosaics of the years 2015 to 2020. Patches are available in 60 x 60 m (6 x 6 pixels) and 200 x 200 m (20 x 20 pixels). Band order is B02, B03, B04, B08, B05, B06, B07, B8A, B11, B12, B01, and B09. Spatial resolution is 10 m.
The folder “labels” contains a JSON string which was used for multi-labeling of the training patches. Code example of an image sample with respective proportions of 94% for Abies and 6% for Larix is: "Abies_alba_3_834_WEFL_NLF.tif": [["Abies", 0.93771], ["Larix", 0.06229]]
The two files “test_filesnames.lst” and “train_filenames.lst” define the filenames used for train (90%) and test (10%) split. We refer to this fixed split for better reproducibility and comparability.
The folder “geojson” contains geoJSON files with all the samples chosen for the derivation of training patch generation (point, 60 m bounding box, 200 m bounding box).
CAUTION: As we could not upload the aerial patches as a single zip file on Zenodo, you need to download the 20 single species files (aerial_60m_…zip) separately. Then, unzip them into a folder named “aerial” with a subfolder named “60m”. This structure is recommended for better reproducibility and comparability to the experimental results of Ahlswede et al. (2022),
Join the archive
Model training, benchmarking, algorithm development… many applications are possible! Feel free to add samples from other regions in Europe or even worldwide. Additional remote sensing data from Lidar, UAVs or aerial imagery from different time steps are very welcome. This helps the research community in development of better deep learning and machine learning models for forest applications. You might have questions or want to share code/results/publications using that archive? Feel free to contact the authors.
Project description
This work was part of the project TreeSatAI (Artificial Intelligence with Satellite data and Multi-Source Geodata for Monitoring of Trees at Infrastructures, Nature Conservation Sites and Forests). Its overall aim is the development of AI methods for the monitoring of forests and woody features on a local, regional and global scale. Based on freely available geodata from different sources (e.g., remote sensing, administration maps, and social media), prototypes will be developed for the deep learning-based extraction and classification of tree- and tree stand features. These prototypes deal with real cases from the monitoring of managed forests, nature conservation and infrastructures. The development of the resulting services by three enterprises (liveEO, Vision Impulse and LUP Potsdam) will be supported by three research institutes (German Research Center for Artificial Intelligence, TUB Remote Sensing Image Analysis Group, TUB Geoinformation in Environmental Planning Lab).
Project publications
Ahlswede, S., Schulz, C., Gava, C., Helber, P., Bischke, B., Förster, M., Arias, F., Hees, J., Demir, B., and Kleinschmit, B.: TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing, Earth System Science Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023, 2023.
Schulz, C., Förster, M., Vulova, S. V., Rocha, A. D., and Kleinschmit, B.: Spectral-temporal traits in Sentinel-1 C-band SAR and Sentinel-2 multispectral remote sensing time series for 61 tree species in Central Europe. Remote Sensing of Environment, 307, 114162, https://doi.org/10.1016/j.rse.2024.114162, 2024.
Conference contributions
Ahlswede, S. Madam, N.T., Schulz, C., Kleinschmit, B., and Demіr, B.: Weakly Supervised Semantic Segmentation of Remote Sensing Images for Tree Species Classification Based on Explanation Methods, IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, https://doi.org/10.48550/arXiv.2201.07495, 2022.
Schulz, C., Förster, M., Vulova, S., Gränzig, T., and Kleinschmit, B.: Exploring the temporal fingerprints of mid-European forest types from Sentinel-1 RVI and Sentinel-2 NDVI time series, IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, https://doi.org/10.1109/IGARSS46834.2022.9884173, 2022.
Schulz, C., Förster, M., Vulova, S., and Kleinschmit, B.: The temporal fingerprints of common European forest types from SAR and optical remote sensing data, AGU Fall Meeting, New Orleans, USA, 2021.
Kleinschmit, B., Förster, M., Schulz, C., Arias, F., Demir, B., Ahlswede, S., Aksoy, A.K., Ha Minh, T., Hees, J., Gava, C., Helber, P., Bischke, B., Habelitz, P., Frick, A., Klinke, R., Gey, S., Seidel, D., Przywarra, S., Zondag, R., and Odermatt B.: Artificial Intelligence with Satellite data and Multi-Source Geodata for Monitoring of Trees and Forests, Living Planet Symposium, Bonn, Germany, 2022.
Schulz, C., Förster, M., Vulova, S., Gränzig, T., and Kleinschmit, B.: Exploring the temporal fingerprints of sixteen mid-European forest types from Sentinel-1 and Sentinel-2 time series, ForestSAT, Berlin, Germany, 2022.
The number of Instagram users in the Netherlands was forecast to continuously decrease between 2024 and 2028 by in total 0.4 million users (-5.35 percent). According to this forecast, in 2028, the Instagram user base will have decreased for the seventh consecutive year to 7.1 million users. User figures, shown here with regards to the platform instagram, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Instagram users in countries like France and Luxembourg.
The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The number of Instagram users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 2.1 million users (+7.02 percent). After the ninth consecutive increasing year, the Instagram user base is estimated to reach 32 million users and therefore a new peak in 2028. Notably, the number of Instagram users of was continuously increasing over the past years.User figures, shown here with regards to the platform instagram, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).