70 datasets found
  1. 34-year Daily Stock Data (1990-2024)

    • kaggle.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivesh Prakash (2024). 34-year Daily Stock Data (1990-2024) [Dataset]. https://www.kaggle.com/datasets/shiveshprakash/34-year-daily-stock-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shivesh Prakash
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description: 34-year Daily Stock Data (1990-2024)

    Context and Inspiration

    This dataset captures historical financial market data and macroeconomic indicators spanning over three decades, from 1990 onwards. It is designed for financial analysis, time series forecasting, and exploring relationships between market volatility, stock indices, and macroeconomic factors. This dataset is particularly relevant for researchers, data scientists, and enthusiasts interested in studying: - Volatility forecasting (VIX) - Stock market trends (S&P 500, DJIA, HSI) - Macroeconomic influences on markets (joblessness, interest rates, etc.) - The effect of geopolitical and economic uncertainty (EPU, GPRD)

    Sources

    The data has been aggregated from a mix of historical financial records and publicly available macroeconomic datasets: - VIX (Volatility Index): Chicago Board Options Exchange (CBOE). - Stock Indices (S&P 500, DJIA, HSI): Yahoo Finance and historical financial databases. - Volume Data: Extracted from official exchange reports. - Macroeconomic Indicators: Bureau of Economic Analysis (BEA), Federal Reserve, and other public records. - Uncertainty Metrics (EPU, GPRD): Economic Policy Uncertainty Index and Global Policy Uncertainty Database.

    Columns

    1. dt: Date of observation in YYYY-MM-DD format.
    2. vix: VIX (Volatility Index), a measure of expected market volatility.
    3. sp500: S&P 500 index value, a benchmark of the U.S. stock market.
    4. sp500_volume: Daily trading volume for the S&P 500.
    5. djia: Dow Jones Industrial Average (DJIA), another key U.S. market index.
    6. djia_volume: Daily trading volume for the DJIA.
    7. hsi: Hang Seng Index, representing the Hong Kong stock market.
    8. ads: Aruoba-Diebold-Scotti (ADS) Business Conditions Index, reflecting U.S. economic activity.
    9. us3m: U.S. Treasury 3-month bond yield, a short-term interest rate proxy.
    10. joblessness: U.S. unemployment rate, reported as quartiles (1 represents lowest quartile and so on).
    11. epu: Economic Policy Uncertainty Index, quantifying policy-related economic uncertainty.
    12. GPRD: Geopolitical Risk Index (Daily), measuring geopolitical risk levels.
    13. prev_day: Previous day’s S&P 500 closing value, added for lag-based time series analysis.

    Key Features

    • Cross-Market Analysis: Compare U.S. markets (S&P 500, DJIA) with international benchmarks like HSI.
    • Macroeconomic Insights: Assess how external factors like joblessness, interest rates, and economic uncertainty affect markets.
    • Temporal Scope: Longitudinal data facilitates trend analysis and machine learning model training.

    Potential Use Cases

    • Forecasting market indices using machine learning or statistical models.
    • Building volatility trading strategies with VIX Futures.
    • Economic research on relationships between policy uncertainty and market behavior.
    • Educational material for financial data visualization and analysis tutorials.

    Feel free to use this dataset for academic, research, or personal projects.

  2. Stock Market Data North America ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data North America ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-north-america-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    North America, Greenland, Belize, Panama, Mexico, El Salvador, United States of America, Bermuda, Honduras, Guatemala, Saint Pierre and Miquelon
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  3. Stock market prediction

    • kaggle.com
    Updated Aug 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luis Andrés García (2023). Stock market prediction [Dataset]. https://www.kaggle.com/datasets/luisandresgarcia/stock-market-prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Luis Andrés García
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    PURPOSE (possible uses)

    Non-professional investors often try to find an interesting stock among those in an index (such as the Standard and Poor's 500, Nasdaq, etc.). They need only one company, the best, and they don't want to fail (perform poorly). So, the metric to optimize is accuracy, described as:

    Accuracy = True Positives / (True Positives + False Positives)

    And the predictive model can be a binary classifier.

    The data covers the price and volume of shares of 31 NASDAQ companies in the year 2022.

    Context

    Every data set I found to predict a stock price (investing) aims to find the price for the next day, and only for that stock. But in practical terms, people like to find the best stocks to buy from an index and wait a few days hoping to get an increase in the price of this investment.

    Content

    Rows are grouped by companies and their age (newest to oldest) on a common date. The first column is the company. The following are the age, market, date (separated by year, month, day, hour, minute), share volume, various traditional prices of that share (close, open, high...), some price and volume statistics and target. The target is mainly defined as 1 when the closing price increases by at least 5% in 5 days (open market days). The target is 0 in any other case.

    Complex features and target were made by executing: https://www.kaggle.com/code/luisandresgarcia/202307

    Thanks

    Many thanks to everyone who participates in scientific papers and Kaggle notebooks related to financial investment.

  4. Stock Market Data Asia ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Asia ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-asia-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Nepal, Malaysia, Uzbekistan, Maldives, Kyrgyzstan, Macao, Indonesia, Vietnam, Cyprus, Korea (Democratic People's Republic of), Asia
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  5. End-of-Day Pricing Market Data Kenya Techsalerator

    • kaggle.com
    Updated Aug 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). End-of-Day Pricing Market Data Kenya Techsalerator [Dataset]. https://www.kaggle.com/datasets/techsalerator/end-of-day-pricing-market-data-kenya-techsalerator
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Techsalerator
    Description

    Techsalerator offers an extensive dataset of End-of-Day Pricing Data for all 66 companies listed on the Nairobi Securities Exchange (XNAI) in Kenya. This dataset includes the closing prices of equities (stocks), bonds, and indices at the end of each trading session. End-of-day prices are vital pieces of market data that are widely used by investors, traders, and financial institutions to monitor the performance and value of these assets over time.

    Top 5 used data fields in the End-of-Day Pricing Dataset for Kenya:

    1. Equity Closing Price :The closing price of individual company stocks at the end of the trading day.This field provides insights into the final price at which market participants were willing to buy or sell shares of a specific company.

    2. Bond Closing Price: The closing price of various fixed-income securities, including government bonds, corporate bonds, and municipal bonds. Bond investors use this field to assess the current market value of their bond holdings.

    3. Index Closing Price: The closing value of market indices, such as the Botswana stock market index, at the end of the trading day. These indices track the overall market performance and direction.

    4. Equity Ticker Symbol: The unique symbol used to identify individual company stocks. Ticker symbols facilitate efficient trading and data retrieval.

    5. Date of Closing Price: The specific trading day for which the closing price is provided. This date is essential for historical analysis and trend monitoring.

    Top 5 financial instruments with End-of-Day Pricing Data in Kenya:

    Nairobi Securities Exchange All Share Index (NASI): The main index that tracks the performance of all companies listed on the Nairobi Securities Exchange (NSE). NASI provides insights into the overall market performance in Kenya.

    Nairobi Securities Exchange 20 Share Index (NSE 20): An index that tracks the performance of the top 20 companies by market capitalization listed on the NSE. NSE 20 is an important benchmark for the Kenyan stock market.

    Safaricom PLC: A leading telecommunications company in Kenya, offering mobile and internet services. Safaricom is one of the largest and most actively traded companies on the NSE.

    Equity Group Holdings PLC: A prominent financial institution in Kenya, providing banking and financial services. Equity Group is a significant player in the Kenyan financial sector and is listed on the NSE.

    KCB Group PLC: Another major financial institution in Kenya, offering banking and financial services. KCB Group is also listed on the NSE and is among the key players in the country's banking industry.

    If you're interested in accessing Techsalerator's End-of-Day Pricing Data for Kenya, please contact info@techsalerator.com with your specific requirements. Techsalerator will provide you with a customized quote based on the number of data fields and records you need. The dataset can be delivered within 24 hours, and ongoing access options can be discussed if needed.

    Data fields included:

    Equity Ticker Symbol Equity Closing Price Bond Ticker Symbol Bond Closing Price Index Ticker Symbol Index Closing Price Date of Closing Price Equity Name Equity Volume Equity High Price Equity Low Price Equity Open Price Bond Name Bond Coupon Rate Bond Maturity Index Name Index Change Index Percent Change Exchange Currency Total Market Capitalization Dividend Yield Price-to-Earnings Ratio (P/E) ‍

    Q&A:

    1. How much does the End-of-Day Pricing Data cost in Kenya ?

    The cost of this dataset may vary depending on factors such as the number of data fields, the frequency of updates, and the total records count. For precise pricing details, it is recommended to directly consult with a Techsalerator Data specialist.

    1. How complete is the End-of-Day Pricing Data coverage in Kenya?

    Techsalerator provides comprehensive coverage of End-of-Day Pricing Data for various financial instruments, including equities, bonds, and indices. Thedataset encompasses major companies and securities traded on Kenya exchanges.

    1. How does Techsalerator collect this data?

    Techsalerator collects End-of-Day Pricing Data from reliable sources, including stock exchanges, financial news outlets, and other market data providers. Data is carefully curated to ensure accuracy and reliability.

    1. Can I select specific financial instruments or multiple countries with Techsalerator's End-of-Day Pricing Data?

    Techsalerator offers the flexibility to select specific financial instruments, such as equities, bonds, or indices, depending on your needs. While the dataset focuses on Botswana, Techsalerator also provides data for other countries and international markets.

    1. How do I pay for this dataset?

    Techsalerator accepts various payment methods, including credit cards, direct transfers, ACH, and wire transfers, facilitating a convenient and se...

  6. T

    Euro Area Stock Market Index (EU50) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1986 - Sep 2, 2025
    Area covered
    Euro Area
    Description

    Euro Area's main stock market index, the EU50, rose to 5377 points on September 2, 2025, gaining 0.16% from the previous session. Over the past month, the index has climbed 2.57% and is up 9.46% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on September of 2025.

  7. US Stock Market Data: S&P 500 Index (1901–2025)

    • kaggle.com
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmadul Karim Chowdhury (2025). US Stock Market Data: S&P 500 Index (1901–2025) [Dataset]. https://www.kaggle.com/datasets/ahmadulkc/s-and-p-500-historical-monthly-prices-19012025/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 13, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ahmadul Karim Chowdhury
    Description

    This dataset contains the monthly historical data of the S&P 500 index from January 1901 to May 2025, collected from Investing.com. The S&P 500 is a stock market index that tracks the performance of 500 large companies listed on stock exchanges in the United States.

    It is widely used as a benchmark for the U.S. equity market, representing over 80% of the total market capitalization. This dataset is suitable for:

    • Time-series forecasting
    • Economic event impact analysis (e.g., wars, recessions, pandemics)
    • Financial visualizations in Tableau or Power BI
    • Quantitative finance and portfolio management research

    Column Descriptions

    ColumnDescription
    DateMonthly date in MM-DD-YY format (e.g., 01-01-24 = Jan 2024)
    PriceClosing price of the S&P 500 for the month
    OpenOpening price of the index for the month
    HighHighest price during the month
    LowLowest price during the month
    Change %Percentage change from previous month’s close

    Potential Use Cases:

    • Visualizing market impact of wars, financial crises, and pandemics
    • Analyzing long-term trends in the U.S. equity market
    • Forecasting future index levels using machine learning
    • Annotating economic history alongside market movements

    Citation:

    Data source: Investing.com

  8. Stock Market Data Europe ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Europe ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-europe-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Slovenia, Lithuania, Italy, Andorra, Latvia, Belgium, Finland, Denmark, Croatia, Switzerland, Europe
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  9. t

    CRSP SP500 market value-weighted stock market index - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CRSP SP500 market value-weighted stock market index - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/crsp-sp500-market-value-weighted-stock-market-index
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The dataset used in this paper is the CRSP SP500 market value-weighted stock market index.

  10. m

    Dow Jones U.S. Total Stock Market Index Technical Indicators

    • meyka.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dow Jones U.S. Total Stock Market Index Technical Indicators [Dataset]. https://meyka.com/indices/%5EDWCF/technical-analysis/
    Explore at:
    Variables measured
    RSI, MACD
    Description

    A dataset of key technical indicators for Dow Jones U.S. Total Stock Market Index, including RSI and MACD, used for technical analysis.

  11. c

    S&P 500 stock Dataset

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). S&P 500 stock Dataset [Dataset]. https://cubig.ai/store/products/359/sp-500-stock-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The S&P 500 stock data is a tabular stock market dataset of daily stock price information (market, high price, low price, closing price, trading volume, etc.) for the last five years (the latest data is until February 2018) of all companies in the S&P 500 index.

    2) Data Utilization (1) S&P 500 stock data has characteristics that: • Each row contains key stock metrics such as date, open, high, low, close, volume, and stock ticker name. • Data is provided as individual stock files and all stock integrated files, so it can be used for various analysis purposes. (2) S&P 500 stock data can be used to: • Stock Price Forecasting and Investment Strategy Development: Using historical stock price data, a variety of investment strategies and forecasting models can be developed, including time series forecasting, volatility analysis, and moving averages. • Market Trends and Corporate Comparison Analysis: It can be used to visualize stock price fluctuations across stocks, compare performance between stocks, analyze market trends, optimize portfolios, and more.

  12. End-of-Day Pricing Data Nigeria Techsalerator

    • kaggle.com
    Updated Aug 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). End-of-Day Pricing Data Nigeria Techsalerator [Dataset]. https://www.kaggle.com/datasets/techsalerator/end-of-day-pricing-data-nigeria-techsalerator
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Techsalerator
    Area covered
    Nigeria
    Description

    Techsalerator offers an extensive dataset of End-of-Day Pricing Data for all 177 companies listed on the Nigerian Stock Exchange (XNSA) in Nigeria. This dataset includes the closing prices of equities (stocks), bonds, and indices at the end of each trading session. End-of-day prices are vital pieces of market data that are widely used by investors, traders, and financial institutions to monitor the performance and value of these assets over time.

    Top 5 used data fields in the End-of-Day Pricing Dataset for Nigeria:

    1. Equity Closing Price :The closing price of individual company stocks at the end of the trading day.This field provides insights into the final price at which market participants were willing to buy or sell shares of a specific company.

    2. Bond Closing Price: The closing price of various fixed-income securities, including government bonds, corporate bonds, and municipal bonds. Bond investors use this field to assess the current market value of their bond holdings.

    3. Index Closing Price: The closing value of market indices, such as the Botswana stock market index, at the end of the trading day. These indices track the overall market performance and direction.

    4. Equity Ticker Symbol: The unique symbol used to identify individual company stocks. Ticker symbols facilitate efficient trading and data retrieval.

    5. Date of Closing Price: The specific trading day for which the closing price is provided. This date is essential for historical analysis and trend monitoring.

    Top 5 financial instruments with End-of-Day Pricing Data in Nigeria:

    Nigerian Stock Exchange (NSE) Domestic Company Index: The main index that tracks the performance of domestic companies listed on the Nigerian Stock Exchange. This index provides an overview of the overall market performance in Nigeria.

    Nigerian Stock Exchange (NSE) Foreign Company Index: The index that tracks the performance of foreign companies listed on the Nigerian Stock Exchange. This index reflects the performance of international companies operating in Nigeria.

    Company A: A prominent Nigerian company with diversified operations across various sectors, such as telecommunications, energy, or banking. This company's stock is widely traded on the Nigerian Stock Exchange.

    Company B: A leading financial institution in Nigeria, offering banking, insurance, or investment services. This company's stock is actively traded on the Nigerian Stock Exchange.

    Company C: A major player in the Nigerian agricultural sector, involved in the production and distribution of agricultural products. This company's stock is listed and actively traded on the Nigerian Stock Exchange.

    If you're interested in accessing Techsalerator's End-of-Day Pricing Data for Nigeria, please contact info@techsalerator.com with your specific requirements. Techsalerator will provide you with a customized quote based on the number of data fields and records you need. The dataset can be delivered within 24 hours, and ongoing access options can be discussed if needed.

    Data fields included:

    Equity Ticker Symbol Equity Closing Price Bond Ticker Symbol Bond Closing Price Index Ticker Symbol Index Closing Price Date of Closing Price Equity Name Equity Volume Equity High Price Equity Low Price Equity Open Price Bond Name Bond Coupon Rate Bond Maturity Index Name Index Change Index Percent Change Exchange Currency Total Market Capitalization Dividend Yield Price-to-Earnings Ratio (P/E) ‍

    Q&A:

    1. How much does the End-of-Day Pricing Data cost in Nigeria ?

    The cost of this dataset may vary depending on factors such as the number of data fields, the frequency of updates, and the total records count. For precise pricing details, it is recommended to directly consult with a Techsalerator Data specialist.

    1. How complete is the End-of-Day Pricing Data coverage in Nigeria?

    Techsalerator provides comprehensive coverage of End-of-Day Pricing Data for various financial instruments, including equities, bonds, and indices. Thedataset encompasses major companies and securities traded on Nigeria exchanges.

    1. How does Techsalerator collect this data?

    Techsalerator collects End-of-Day Pricing Data from reliable sources, including stock exchanges, financial news outlets, and other market data providers. Data is carefully curated to ensure accuracy and reliability.

    1. Can I select specific financial instruments or multiple countries with Techsalerator's End-of-Day Pricing Data?

    Techsalerator offers the flexibility to select specific financial instruments, such as equities, bonds, or indices, depending on your needs. While the dataset focuses on Botswana, Techsalerator also provides data for other countries and international markets.

    1. How do I pay for this dataset?

    Techsalerator accepts various payment methods, including credit cards, direct transfers, ACH, and w...

  13. e

    Monthly Indices of Returns for the British Equity Market, 1825-70 - Dataset...

    • b2find.eudat.eu
    Updated Aug 15, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2009). Monthly Indices of Returns for the British Equity Market, 1825-70 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/af0dfcdf-03e4-5b19-8b36-852d37ea88ff
    Explore at:
    Dataset updated
    Aug 15, 2009
    Area covered
    United Kingdom
    Description

    Abstract copyright UK Data Service and data collection copyright owner. The dataset contains monthly indices of returns for the British equity market covering the period 1825-70. The main data source used is the Course of the Exchange, a stockbroker list for the London Stock Exchange. All common equities from this list are included apart from some stocks for which there is insufficient or missing data and stocks which listed for less than 12 months. Using monthly stock prices from the Course of the Exchange, the team computed capital appreciation, dividend yield and total return for the overall market and for the thirteen industrial/commercial sectors on the market. These returns were computed using three weighting techniques - weighted by market capitalization, weighted by paid-up capital, and equally weighted (or unweighted). Monthly total market capitalization and paid-up capital is also reported for the overall market and for each of the thirteen sectors. In an attempt to control for survivorship bias, adjustments are made to the total returns using three different strategies. Using these strategies, the lower and upper bound estimates of shareholder returns are established. Main Topics: The stock indices currently available for the 1825-1870 period are based on a small sample of equity stocks. Indeed, the best index, that of Gayer at al, only covers the period up to 1850. The aim of this study was to construct a comprehensive dataset of British equity prices for the 1825-70 period, using share price data from The Course of the Exchange and The Railway Times. As well as estimating total market capitalisation for the period mentioned, this study also shows sectoral indices. These indices will enable researchers to address three important research questions. Firstly, it will be possible to measure the growth of the market for equity and analyse which sectors contributed to the growth. Secondly, using this data will make it possible to shed some light on the extent to which uncalled capital was used and to determine the riskiness and value of uncalled capital. Thirdly, this study provides the possibility to assess the impact of liberalisation of company law on the development on the equity market.

  14. m

    Egyptian Stock Exchange (EGX)

    • data.mendeley.com
    Updated Nov 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Essam Houssein (2020). Egyptian Stock Exchange (EGX) [Dataset]. http://doi.org/10.17632/7chdr568x7.1
    Explore at:
    Dataset updated
    Nov 20, 2020
    Authors
    Essam Houssein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study is based on the historical data for some of the indicators on the Egyptian Stock Exchange (EGX), in order to build a prediction model with high accuracy. Data used in this study are purchased from Egypt for Information Dissemination (EGID) which is a Governmental organization that provides data for EGX. The data contain six stock market indices; for example, EGX-30 index local currency is used for interest estimates and denominated in US dollars. It measures top 30 firms in liquidity and activity. The second index used in this study is EGX-30- Capped which is designed to track performance of the most traded companies in accordance with the rules set for mutual funds. The third index is EGX-70 which aims at providing wider tools for investors to monitor market performance. EGX-100 index as a forth dataset evaluates performance of the 100 active firms, including 30 of EGX- 30 index as well as 70 of EGX-70 index. NIlE index avoids concentration on one industry and therefore has a good representation of various industries/sectors in the economy, and the index is weighted by market capitalization and adjusted by free float. The last index is EGX-50-EWI which tracks top 50 companies in terms of liquidity and activity. The index is designed to balance the impact of price changes among the constituents of the index as they will have a fixed weight of 2% at each quarterly review.

  15. Stock Market Data Latam/Latin America ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Latam/Latin America ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-latam-latin-america-end-of-day-pricing-da-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Virgin Islands (U.S.), Chile, Bolivia (Plurinational State of), Saint Vincent and the Grenadines, Argentina, Aruba, Jamaica, Antigua and Barbuda, Venezuela (Bolivarian Republic of), Dominican Republic, Latin America
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  16. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. Machine Learning stock prediction: HD Stock Prediction (Forecast)

    • kappasignal.com
    Updated Oct 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Machine Learning stock prediction: HD Stock Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/machine-learning-stock-prediction-hd.html
    Explore at:
    Dataset updated
    Oct 13, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Machine Learning stock prediction: HD Stock Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. A New Index to Measure U.S. Financial Conditions

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve System (2024). A New Index to Measure U.S. Financial Conditions [Dataset]. https://catalog.data.gov/dataset/a-new-index-to-measure-u-s-financial-conditions
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Description

    An index that can be used to gauge broad financial conditions and assess how these conditions are related to future economic growth. The index is broadly consistent with how the FRB/US model generally relates key financial variables to economic activity. The index aggregates changes in seven financial variables: the federal funds rate, the 10-year Treasury yield, the 30-year fixed mortgage rate, the triple-B corporate bond yield, the Dow Jones total stock market index, the Zillow house price index, and the nominal broad dollar index using weights implied by the FRB/US model and other models in use at the Federal Reserve Board. These models relate households' spending and businesses' investment decisions to changes in short- and long-term interest rates, house and equity prices, and the exchange value of the dollar, among other factors. These financial variables are weighted using impulse response coefficients (dynamic multipliers) that quantify the cumulative effects of unanticipated permanent changes in each financial variable on real gross domestic product (GDP) growth over the subsequent year. The resulting index is named Financial Conditions Impulse on Growth (FCI-G). One appealing feature of the FCI-G is that its movements can be used to measure whether financial conditions have tightened or loosened, to summarize how changes in financial conditions are associated with real GDP growth over the following year, or both.

  19. Stock Market Data Africa ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Africa ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-africa-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Africa
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  20. Stock Market Data - Nifty 100 stocks (15 min) data

    • kaggle.com
    Updated Aug 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deba (2025). Stock Market Data - Nifty 100 stocks (15 min) data [Dataset]. https://www.kaggle.com/datasets/debashis74017/stock-market-data-nifty-100-stocks-15-min-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 7, 2025
    Dataset provided by
    Kaggle
    Authors
    Deba
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Disclaimer!!! Data uploaded here are collected from the internet. The sole purposes of uploading these data are to provide this Kaggle community with a good source of data for analysis and research. I don't own these datasets and am also not responsible for them legally by any means. I am not charging anything (either monetary or any favor) for this dataset.

    Overview

    This dataset contains historical daily prices for Nifty 100 stocks and indices currently trading on the Indian Stock Market. - Data samples are of 15-minute intervals and the availability of data is from Jan 2015 to Feb 2022. - Along with OHLCV (Open, High, Low, Close, and Volume) data, we have created 55 technical indicators. - More details about these technical indicators are provided in the Data description file.

    Content

    The whole dataset is around 5 GB, and 100 stocks (Nifty 100 stocks) and 2 indices (Nifty 50 and Nifty Bank indices) are present in this dataset. Details about each file are - - OHLCV (Open, High, Low, Close, and Volume) data

    Inspiration

    • Data is uploaded for Research and Educational purposes.

    Possible problem statements

    • Univariate and Multi-variate time series forecasting of stock prices and index prices
    • Multi-variate data can be used to predict the trend of the stock price (Buy or Sell or Hold)
    • Different intraday or positional trading strategies can be built out of this multivariate data. [technical indicators are already added here]
    • EDA on time series data
    Index NameIndex NameIndex NameIndex Name
    NIFTY BANKNIFTY 50NIFTY 100NIFTY COMMODITIES
    NIFTY CONSUMPTIONNIFTY FIN SERVICENIFTY ITNIFTY INFRA
    NIFTY ENERGYNIFTY FMCGNIFTY AUTONIFTY 200
    NIFTY ALPHA 50NIFTY 500NIFTY CPSENIFTY GS COMPSITE
    NIFTY HEALTHCARENIFTY CONSR DURBLNIFTY LARGEMID250NIFTY INDIA MFG
    NIFTY IND DIGITAL
    Company NameCompany NameCompany NameCompany Name
    ABB India Ltd.Adani Energy Solutions Ltd.Adani Enterprises Ltd.Adani Green Energy Ltd.
    Adani Ports and SEZ Ltd.Adani Power Ltd.Ambuja Cements Ltd.Apollo Hospitals Enterprise Ltd.
    Asian Paints Ltd.Avenue Supermarts Ltd.Axis Bank Ltd.Bajaj Auto Ltd.
    Bajaj Finance Ltd.Bajaj Finserv Ltd.Bajaj Holdings & Investment Ltd.Bajaj Housing Finance Ltd.
    Bank of BarodaBharat Electronics Ltd.Bharat Petroleum Corporation Ltd.Bharti Airtel Ltd.
    Bosch Ltd.Britannia Industries Ltd.CG Power and Industrial Solutions Ltd.Canara Bank
    Cholamandalam Inv. & Fin. Co. Ltd.Cipla Ltd.Coal India Ltd.DLF Ltd.
    Dabur India Ltd.Divi's Laboratories Ltd.Dr. Reddy's Laboratories Ltd.Eicher Motors Ltd.
    Eternal Ltd.GAIL (India) Ltd.Godrej Consumer Products Ltd.Grasim Industries Ltd.
    HCL Technologies Ltd.HDFC Bank Ltd.HDFC Life Insurance Co. Ltd.Havells India Ltd.
    Hero MotoCorp Ltd.Hindalco Industries Ltd.Hindustan Aeronautics Ltd.Hindustan Unilever Ltd.
    Hyundai Motor India Ltd.ICICI Bank Ltd.ICICI Lombard General Insurance Ltd.ICICI Prudential Life Insurance Ltd.
    ITC Ltd.Indian Hotels Co. Ltd.Indian Oil Corporation Ltd.I...
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shivesh Prakash (2024). 34-year Daily Stock Data (1990-2024) [Dataset]. https://www.kaggle.com/datasets/shiveshprakash/34-year-daily-stock-data
Organization logo

34-year Daily Stock Data (1990-2024)

Common stocks' daily closing values and trading volumes for quick ML projects

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 10, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Shivesh Prakash
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

Dataset Description: 34-year Daily Stock Data (1990-2024)

Context and Inspiration

This dataset captures historical financial market data and macroeconomic indicators spanning over three decades, from 1990 onwards. It is designed for financial analysis, time series forecasting, and exploring relationships between market volatility, stock indices, and macroeconomic factors. This dataset is particularly relevant for researchers, data scientists, and enthusiasts interested in studying: - Volatility forecasting (VIX) - Stock market trends (S&P 500, DJIA, HSI) - Macroeconomic influences on markets (joblessness, interest rates, etc.) - The effect of geopolitical and economic uncertainty (EPU, GPRD)

Sources

The data has been aggregated from a mix of historical financial records and publicly available macroeconomic datasets: - VIX (Volatility Index): Chicago Board Options Exchange (CBOE). - Stock Indices (S&P 500, DJIA, HSI): Yahoo Finance and historical financial databases. - Volume Data: Extracted from official exchange reports. - Macroeconomic Indicators: Bureau of Economic Analysis (BEA), Federal Reserve, and other public records. - Uncertainty Metrics (EPU, GPRD): Economic Policy Uncertainty Index and Global Policy Uncertainty Database.

Columns

  1. dt: Date of observation in YYYY-MM-DD format.
  2. vix: VIX (Volatility Index), a measure of expected market volatility.
  3. sp500: S&P 500 index value, a benchmark of the U.S. stock market.
  4. sp500_volume: Daily trading volume for the S&P 500.
  5. djia: Dow Jones Industrial Average (DJIA), another key U.S. market index.
  6. djia_volume: Daily trading volume for the DJIA.
  7. hsi: Hang Seng Index, representing the Hong Kong stock market.
  8. ads: Aruoba-Diebold-Scotti (ADS) Business Conditions Index, reflecting U.S. economic activity.
  9. us3m: U.S. Treasury 3-month bond yield, a short-term interest rate proxy.
  10. joblessness: U.S. unemployment rate, reported as quartiles (1 represents lowest quartile and so on).
  11. epu: Economic Policy Uncertainty Index, quantifying policy-related economic uncertainty.
  12. GPRD: Geopolitical Risk Index (Daily), measuring geopolitical risk levels.
  13. prev_day: Previous day’s S&P 500 closing value, added for lag-based time series analysis.

Key Features

  • Cross-Market Analysis: Compare U.S. markets (S&P 500, DJIA) with international benchmarks like HSI.
  • Macroeconomic Insights: Assess how external factors like joblessness, interest rates, and economic uncertainty affect markets.
  • Temporal Scope: Longitudinal data facilitates trend analysis and machine learning model training.

Potential Use Cases

  • Forecasting market indices using machine learning or statistical models.
  • Building volatility trading strategies with VIX Futures.
  • Economic research on relationships between policy uncertainty and market behavior.
  • Educational material for financial data visualization and analysis tutorials.

Feel free to use this dataset for academic, research, or personal projects.

Search
Clear search
Close search
Google apps
Main menu