41 datasets found
  1. Deaths due to COVID-19, registered in England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Deaths due to COVID-19, registered in England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19registeredinenglandandwales2020
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 1, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.

  2. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  3. Updating ethnic contrasts in deaths involving the coronavirus (COVID-19),...

    • cy.ons.gov.uk
    • ons.gov.uk
    xlsx
    Updated Feb 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Updating ethnic contrasts in deaths involving the coronavirus (COVID-19), England [Dataset]. https://cy.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19england
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates (ASMRs) for deaths involving COVID-19 by ethnic group, England.

  4. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Mar 20, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  5. Death registrations and occurrences by local authority and health board

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Death registrations and occurrences by local authority and health board [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/datasets/deathregistrationsandoccurrencesbylocalauthorityandhealthboard
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of deaths registered in England and Wales, including deaths involving coronavirus (COVID-19), by local authority, health board and place of death in the latest weeks for which data are available. The occurrence tabs in the 2021 edition of this dataset were updated for the last time on 25 October 2022.

  6. c

    COVID-19 Mortality among Migrant Health Care Workers, 2021

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yeates, N; Tipping, S; Murphy, V (2025). COVID-19 Mortality among Migrant Health Care Workers, 2021 [Dataset]. http://doi.org/10.5255/UKDA-SN-856071
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    The Open University
    Authors
    Yeates, N; Tipping, S; Murphy, V
    Time period covered
    Mar 1, 2022 - Jun 30, 2022
    Area covered
    Mexico, United Kingdom, Nigeria, India
    Variables measured
    Other
    Measurement technique
    This project relied entirely on freely-available international statistical data that has already been quality checked by reputable organisations prior to being released to the public. We drew on three types of source. First, international datasets such as National Healthcare Workforce Accounts (NHWA, WHO), human health and social work sector labour force data (ISIC Q, ILO), WHO's Covid-19 dashboard, and estimates of excess deaths produced by various academics and research organisations (e.g. Johns Hopkins Center for Systems Science and Engineering). Second, best-available national statistical surveys (e.g. Annual Population Survey, UK Office for National Statistics) were used where data needed was not available in international datasets. Third, in the absence of a reported value from an extant dataset, we imputed missing data using best models. This latter method was used to calculate the proportion of foreign-born health workers among health workforces.
    Description

    The dataset consists of quantitative data derived mainly from international datasets (ILO, WHO), supplemented by data from national datasets and modelled data to complete missing values. It shows the statistical data we collated and used to calculate estimates of Covid-19 deaths among migrant health care workers and includes details on how missing information was imputed. It includes spreadsheet estimates for India, Nigeria, Mexico, and the UK for excess and reported Covid-19 deaths amongst foreign-born workers and for all workers in the human health and social work sector and in three specific health occupations: doctors, nurses, and midwives. For each group the spreadsheets provide a basic estimate and an age-sex standardised estimate.

    This project aims to give proper attention to the place of migrant workers in health care systems during the Covid-19 pandemic. Migrant workers are of substantial and growing significance in many countries' health and care systems and are key to realising the global goal of universal health care, so it is vital that we understand much better how Covid-19 is impacting on them.

    The project's overarching research questions are, in the relation to Covid-19, what risks do migrant health care workers experience, what are the pressures on resilient and sustainable health care workforces, and how are stakeholders responding to these risks and pressures?

    We develop a research method to estimate Covid-19 migrant health care worker mortality rates and trial the method, undertaking statistical analysis and modelling using quantitative data drawn from WHO and OECD data and other demographic and bio-statistical data as available.

    In addition to strengthening the methodological techniques and empirical evidence base on the risks of Covid-19 infection and death among migrant health care workers our project also tracks, through documentary analysis, collective responses to such risks and challenges to sustainable health workforces for universal health coverage.

    This project is attuned to the urgent need for high quality data and for 'real world' solutions-focused Covid-19 research forged from collaboration. We are focused on the immediate application of proof-of concept findings to a rapidly-evolving global health crisis.

  7. h

    Public Health Research Database (PHRD)

    • healthdatagateway.org
    unknown
    Updated Apr 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Public Health Research Database (PHRD) [Dataset]. https://healthdatagateway.org/dataset/403
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Apr 21, 2021
    Dataset authored and provided by
    Office for National Statistics
    License

    https://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherschemehttps://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherscheme

    Description

    The Public Health Research Database (PHRD) is a linked asset which currently includes Census 2011 data; Mortality Data; Hospital Episode Statistics (HES); GP Extraction Service (GPES) Data for Pandemic Planning and Research data. Researchers may apply for these datasets individually or any combination of the current 4 datasets.

    The purpose of this dataset is to enable analysis of deaths involving COVID-19 by multiple factors such as ethnicity, religion, disability and known comorbidities as well as age, sex, socioeconomic and marital status at subnational levels. 2011 Census data for usual residents of England and Wales, who were not known to have died by 1 January 2020, linked to death registrations for deaths registered between 1 January 2020 and 8 March 2021 on NHS number. The data exclude individuals who entered the UK in the year before the Census took place (due to their high propensity to have left the UK prior to the study period), and those over 100 years of age at the time of the Census, even if their death was not linked. The dataset contains all individuals who died (any cause) during the study period, and a 5% simple random sample of those still alive at the end of the study period. For usual residents of England, the dataset also contains comorbidity flags derived from linked Hospital Episode Statistics data from April 2017 to December 2019 and GP Extraction Service Data from 2015-2019.

  8. Deaths due to coronavirus (COVID-19) by English region and Welsh health...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths due to coronavirus (COVID-19) by English region and Welsh health board [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19byenglishregionandwelshhealthboard
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional age-standardised mortality rates for deaths due to COVID-19 by sex, English regions and Welsh health boards.

  9. d

    SHMI COVID-19 activity contextual indicators

    • digital.nhs.uk
    Updated Jul 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SHMI COVID-19 activity contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2024-07
    Explore at:
    Dataset updated
    Jul 11, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Notes:

  10. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  11. d

    1.4 Under 75 mortality rate from cancer

    • digital.nhs.uk
    csv, pdf, xlsx
    Updated Mar 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). 1.4 Under 75 mortality rate from cancer [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/nhs-outcomes-framework/march-2022
    Explore at:
    csv(151.0 kB), xlsx(238.6 kB), pdf(225.0 kB), pdf(860.1 kB)Available download formats
    Dataset updated
    Mar 17, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2003 - Dec 31, 2020
    Area covered
    England
    Description

    Update 2 March 2023: Following the merger of NHS Digital and NHS England on 1st February 2023 we are reviewing the future presentation of the NHS Outcomes Framework indicators. As part of this review, the annual publication which was due to be released in March 2023 has been delayed. Further announcements about this dataset will be made on this page in due course. Directly standardised mortality rate from cancer for people aged under 75, per 100,000 population. To ensure that the NHS is held to account for doing all that it can to prevent deaths from cancer in people under 75. Some different patterns have been observed in the 2020 mortality data which are likely to have been impacted by the coronavirus (COVID-19) pandemic. Statistics from this period should also be interpreted with care. Legacy unique identifier: P01733

  12. w

    COVID-19 Health Inequalities Monitoring in England tool (CHIME)

    • gov.uk
    Updated May 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for Health Improvement and Disparities (2023). COVID-19 Health Inequalities Monitoring in England tool (CHIME) [Dataset]. https://www.gov.uk/government/statistics/covid-19-health-inequalities-monitoring-in-england-tool-chime
    Explore at:
    Dataset updated
    May 24, 2023
    Dataset provided by
    GOV.UK
    Authors
    Office for Health Improvement and Disparities
    Area covered
    England
    Description

    The COVID-19 Health Inequalities Monitoring in England (CHIME) tool brings together data relating to the direct impacts of coronavirus (COVID-19) on factors such as mortality rates, hospital admissions, confirmed cases and vaccinations.

    By presenting inequality breakdowns - including by age, sex, ethnic group, level of deprivation and region - the tool provides a single point of access to:

    • show how inequalities have changed during the course of the pandemic and what the current cumulative picture is
    • bring together data in one tool to enable users to access and use the intelligence more easily
    • provide indicators with a consistent methodology across different data sets to facilitate understanding
    • support users to identify and address inequalities within their areas, and identify priority areas for recovery

    In the March 2023 update, data has been updated for deaths, hospital admissions and vaccinations. Data on inequalities in vaccination uptake within upper tier local authorities has been added to the tool for the first time. This replaces data for lower tier local authorities, published in December 2022, allowing the reporting of a wider range of inequality breakdowns within these areas.

    Updates to the CHIME tool are paused pending the results of a review of the content and presentation of data within the tool. The tool has not been updated since the 16 March 2023.

    Please send any questions or comments to PHA-OHID@dhsc.gov.uk

  13. d

    SHMI COVID-19 activity contextual indicators

    • digital.nhs.uk
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). SHMI COVID-19 activity contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2023-06
    Explore at:
    Dataset updated
    Jun 15, 2023
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Notes:

  14. COVID-19 vaccine effectiveness estimated using Census 2021 variables,...

    • statistics.ukdataservice.ac.uk
    xlsx
    Updated Mar 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2023). COVID-19 vaccine effectiveness estimated using Census 2021 variables, England: 31 March 2021 to 20 March 2022 [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/covid-19-vaccine-effectiveness-estimated-using-census-2021-variables-england
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 8, 2023
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Area covered
    England
    Description

    Estimates of the risk of hospital admission for coronavirus (COVID-19) and death involving COVID-19 by vaccination status, overall and by age group, using anonymised linked data from Census 2021. Experimental Statistics.

    Outcome definitions

    For this analysis, we define a death as involving COVID-19 if either of the ICD-10 codes U07.1 (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified) is mentioned on the death certificate. Information on cause of death coding is available in the User Guide to Mortality Statistics. We use date of occurrance rather than date of registration to give the date of the death.

    We define COVID-109 hospitalisation as an inpatient episode in Hospital Episode Statistics where the primary diagnosis was COVID-19, identified by the ICD-19 codes (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified). Where an individual had experienced more than one COVID-19 hospitalisation, the earliest that occurred within the study period was used. We define the date of COVID-19 hospitalisation as the start of the hospital episode.

    ICD-10 code

    U07.1 :

    COVID-19, virus identified

    U07.2:

    COVID-19, virus not identified

    Vaccination status is defined by the dose and the time since the last dose received

    Unvaccinated:

    no vaccination to less than 21 days post first dose

    First dose 21 days to 3 months:

    more than or equal to 21 days post second dose to earliest of less than 91 days post first dose or less than 21 days post second dose

    First dose 3+ months:

    more than or equal to 91 days post first dose to less than 21 days post second dose

    Second dose 21 days to 3 months:

    more than or equal to 21 days post second dose to earliest of less than 91 days post second dose or less than 21 days post third dose

    Second dose 3-6 months:

    more than or equal to 91 days post second dose to earliest of less than 182 days post second dose or less than 21 days post third dose

    Second dose 6+ months:

    more than or equal to 182 days post second dose to less than 21 days post third dose

    Third dose 21 days to 3 months:

    more than or equal to 21 days post third dose to less than 91 days post third dose

    Third dose 3+ months:

    more than or equal to 91 days post third dose

    Model adjustments

    Three sets of model adjustments were used

    Age adjusted:

    age (as a natural spline)

    Age, socio-demographics adjusted:

    age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status)

    Fully adjusted:

    age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status), plus health-related characteristics (disability, self-reported health, care home residency, number of QCovid comorbidities (grouped), BMI category, frailty flag and hospitalisation within the last 21 days.

    Age

    Age in years is defined on the Census day 2021 (21 March 2021). Age is included in the model as a natural spline with boundary knots at the 10th and 90th centiles and internal knots at the 25th, 50th and 75th centiles. The positions of the knots are calculated separately for the overall model and for each age group for the stratified model.

  15. Coronavirus (COVID-19) cases, recoveries, and deaths worldwide as of May 2,...

    • statista.com
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus (COVID-19) cases, recoveries, and deaths worldwide as of May 2, 2023 [Dataset]. https://www.statista.com/statistics/1087466/covid19-cases-recoveries-deaths-worldwide/
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, there were roughly 687 million global cases of COVID-19. Around 660 million people had recovered from the disease, while there had been almost 6.87 million deaths. The United States, India, and Brazil have been among the countries hardest hit by the pandemic.

    The various types of human coronavirus The SARS-CoV-2 virus is the seventh known coronavirus to infect humans. Its emergence makes it the third in recent years to cause widespread infectious disease following the viruses responsible for SARS and MERS. A continual problem is that viruses naturally mutate as they attempt to survive. Notable new variants of SARS-CoV-2 were first identified in the UK, South Africa, and Brazil. Variants are of particular interest because they are associated with increased transmission.

    Vaccination campaigns Common human coronaviruses typically cause mild symptoms such as a cough or a cold, but the novel coronavirus SARS-CoV-2 has led to more severe respiratory illnesses and deaths worldwide. Several COVID-19 vaccines have now been approved and are being used around the world.

  16. l

    Life Expectancy by MSOA 2016 to 2020

    • data.leicester.gov.uk
    csv, excel, geojson +1
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Life Expectancy by MSOA 2016 to 2020 [Dataset]. https://data.leicester.gov.uk/explore/dataset/life-expectancy-msoa/
    Explore at:
    json, geojson, csv, excelAvailable download formats
    Dataset updated
    Jun 28, 2023
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Life expectancy at birth for males and females for Middle Layer Super Output Areas (MSOAs), Leicester: 2016 to 2020The average number of years a person would expect to live based on contemporary mortality rates.For a particular area and time period, it is an estimate of the average number of years a newborn baby would survive if he or she experienced the age-specific mortality rates for that area and time period throughout his or her life.Life expectancy figures have been calculated based on death registrations between 2016 to 2020, which includes the first wave and part of the second wave of the coronavirus (COVID-19) pandemic.

  17. Coronavirus (COVID-19) related deaths by occupation, England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Coronavirus (COVID-19) related deaths by occupation, England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/datasets/coronaviruscovid19relateddeathsbyoccupationenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 25, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of deaths and age-standardised mortality rates involving the coronavirus (COVID-19), by occupational groups, for deaths registered between 9 March and 28 December 2020 in England and Wales. Figures are provided for males and females.

  18. d

    Summary Hospital-level Mortality Indicator (SHMI) - Deaths associated with...

    • digital.nhs.uk
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Summary Hospital-level Mortality Indicator (SHMI) - Deaths associated with hospitalisation [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi
    Explore at:
    Dataset updated
    Dec 14, 2023
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Aug 1, 2022 - Jul 31, 2023
    Area covered
    England
    Description

    This publication of the SHMI relates to discharges in the reporting period August 2022 - July 2023. The SHMI is the ratio between the actual number of patients who die following hospitalisation at the trust and the number that would be expected to die on the basis of average England figures, given the characteristics of the patients treated there. The SHMI covers patients admitted to hospitals in England who died either while in hospital or within 30 days of being discharged. Deaths related to COVID-19 are excluded from the SHMI. To help users of the data understand the SHMI, trusts have been categorised into bandings indicating whether a trust's SHMI is 'higher than expected', 'as expected' or 'lower than expected'. For any given number of expected deaths, a range of observed deaths is considered to be 'as expected'. If the observed number of deaths falls outside of this range, the trust in question is considered to have a higher or lower SHMI than expected. The expected number of deaths is a statistical construct and is not a count of patients. The difference between the number of observed deaths and the number of expected deaths cannot be interpreted as the number of avoidable deaths or excess deaths for the trust. The SHMI is not a measure of quality of care. A higher than expected number of deaths should not immediately be interpreted as indicating poor performance and instead should be viewed as a 'smoke alarm' which requires further investigation. Similarly, an 'as expected' or 'lower than expected' SHMI should not immediately be interpreted as indicating satisfactory or good performance. Trusts may be located at multiple sites and may be responsible for 1 or more hospitals. A breakdown of the data by site of treatment is also provided, as well as a breakdown of the data by diagnosis group. Further background information and supporting documents, including information on how to interpret the SHMI, are available on the SHMI homepage (see Related Links). Information about the exclusion of COVID-19 from the SHMI can also be found on the same page. A link to the methodological changes statement which details the exclusion is also available in the Related Links section

  19. f

    Adjusted odds ratios with 95% confidence interval from multivariable...

    • plos.figshare.com
    xls
    Updated Apr 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan J. Lowhorn; Mohammed Chowdhury; Symon Kimitei; Sammie Haskin; Mohammad Masum; A. K. M. Fazlur Rahman (2024). Adjusted odds ratios with 95% confidence interval from multivariable logistic regression model with GEE for the outcome COVID-19 mortality. [Dataset]. http://doi.org/10.1371/journal.pone.0296895.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 17, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Ryan J. Lowhorn; Mohammed Chowdhury; Symon Kimitei; Sammie Haskin; Mohammad Masum; A. K. M. Fazlur Rahman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Adjusted odds ratios with 95% confidence interval from multivariable logistic regression model with GEE for the outcome COVID-19 mortality.

  20. h

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes...

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes [Dataset]. https://healthdatagateway.org/dataset/139
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.

    Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office for National Statistics (2022). Deaths due to COVID-19, registered in England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19registeredinenglandandwales2020
Organization logo

Deaths due to COVID-19, registered in England and Wales

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
xlsxAvailable download formats
Dataset updated
Jul 1, 2022
Dataset provided by
Office for National Statisticshttp://www.ons.gov.uk/
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Area covered
England
Description

The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.

Search
Clear search
Close search
Google apps
Main menu