71 datasets found
  1. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    • +1more
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the

  2. Large Scale International Boundaries (LSIB)

    • data.amerigeoss.org
    shp
    Updated Jan 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2024). Large Scale International Boundaries (LSIB) [Dataset]. https://data.amerigeoss.org/dataset/large-scale-international-boundaries-lsib
    Explore at:
    shp(46321649)Available download formats
    Dataset updated
    Jan 17, 2024
    Dataset provided by
    United Nationshttp://un.org/
    Description

    Large Scale International Boundaries

    Version 11.1 Release Date: August 22, 2022

    Overview

    The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. These data and their derivatives are the only international boundary lines approved for U.S. Government use. They reflect U.S. Government policy, and not necessarily de facto limits of control. This dataset is a National Geospatial Data Asset.

    Details

    Sources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery of the data involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.

    Attributes

    The dataset uses the following attributes: Attribute Name Explanation Country Code Country-level codes are from the Geopolitical Entities, Names, and Codes Standard (GENC). The Q2 code denotes a line representing a boundary associated with an area not in GENC. Country Names Names approved by the U.S. Board on Geographic Names (BGN). Names for lines associated with a Q2 code are descriptive and are not necessarily BGN-approved. Label Required text label for the line segment where scale permits Rank/Status Rank 1: International Boundary Rank 2: Other Line of International Separation Rank 3: Special Line Notes Explanation of any applicable special circumstances Cartographic Usage Depiction of the LSIB requires a visual differentiation between the three categories of boundaries: International Boundaries (Rank 1), Other Lines of International Separation (Rank 2), and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues. Please direct inquiries to internationalboundaries@state.gov.

    Credits

    The lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre. Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.

    Changes from Prior Release

    This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Changes to lines include: • Akrotiri (UK) / Cyprus • Albania / Montenegro • Albania / Greece • Albania / North Macedonia • Armenia / Turkey • Austria / Czechia • Austria / Slovakia • Austria / Hungary • Austria / Slovenia • Austria / Germany • Austria / Italy • Austria / Switzerland • Azerbaijan / Turkey • Azerbaijan / Iran • Belarus / Latvia • Belarus / Russia • Belarus / Ukraine • Belarus / Poland • Bhutan / India • Bhutan / China • Bulgaria / Turkey • Bulgaria / Romania • Bulgaria / Serbia • Bulgaria / Romania • China / Tajikistan • China / India • Croatia / Slovenia • Croatia / Hungary • Croatia / Serbia • Croatia / Montenegro • Czechia / Slovakia • Czechia / Poland • Czechia / Germany • Finland / Russia • Finland / Norway • Finland / Sweden • France / Italy • Georgia / Turkey • Germany / Poland • Germany / Switzerland • Greece / North Macedonia • Guyana / Suriname • Hungary / Slovenia • Hungary / Serbia • Hungary / Romania • Hungary / Ukraine • Iran / Turkey • Iraq / Turkey • Italy / Slovenia • Italy / Switzerland • Italy / Vatican City • Italy / San Marino • Kazakhstan / Russia • Kazakhstan / Uzbekistan • Kosovo / north Macedonia • Kosovo / Serbia • Kyrgyzstan / Tajikistan • Kyrgyzstan / Uzbekistan • Latvia / Russia • Latvia / Lithuania • Lithuania / Poland • Lithuania / Russia • Moldova / Ukraine • Moldova / Romania • Norway / Russia • Norway / Sweden • Poland / Russia • Poland / Ukraine • Poland / Slovakia • Romania / Ukraine • Romania / Serbia • Russia / Ukraine • Syria / Turkey • Tajikistan / Uzbekistan

    This release also contains topology fixes, land boundary terminus refinements, and tripoint adjustments.

    Copyright Notice and Disclaimer

    While U.S. Government works prepared by employees of the U.S. Government as part of their official duties are not subject to Federal copyright protection (see 17 U.S.C. § 105), copyrighted material incorporated in U.S. Government works retains its copyright protection. The works on or made available through download from the U.S. Department of State’s website may not be used in any manner that infringes any intellectual property rights or other proprietary rights held by any third party. Use of any copyrighted material beyond what is allowed by fair use or other exemptions may require appropriate permission from the relevant rightsholder. With respect to works on or made available through download from the U.S. Department of State’s website, neither the U.S. Government nor any of its agencies, employees, agents, or contractors make any representations or warranties—express, implied, or statutory—as to the validity, accuracy, completeness, or fitness for a particular purpose; nor represent that use of such works would not infringe privately owned rights; nor assume any liability resulting from use of such works; and shall in no way be liable for any costs, expenses, claims, or demands arising out of use of such works.

  3. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  4. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  5. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  7. H

    Greenland - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Sep 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). Greenland - Population Counts [Dataset]. https://data.humdata.org/dataset/f2eaafea-ac94-4bfd-9f8c-53bbda4bcb00?force_layout=desktop
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Sep 19, 2021
    Dataset provided by
    WorldPop
    Area covered
    Greenland
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  8. H

    French Southern Territories - Population Counts

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). French Southern Territories - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-french-southern-territories
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    French Southern and Antarctic Lands
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  9. A

    China, Hong Kong Special Administrative Region - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated May 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). China, Hong Kong Special Administrative Region - Population Counts [Dataset]. https://data.amerigeoss.org/ru/dataset/worldpop-china-hong-kong-special-administrative-region-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    May 26, 2023
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    Hong Kong
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  10. T

    PERSONAL SAVINGS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 28, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). PERSONAL SAVINGS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/personal-savings
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    May 28, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for PERSONAL SAVINGS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  11. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2014). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2014
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  12. o

    Country Codes

    • public.opendatasoft.com
    • data.smartidf.services
    • +6more
    csv, excel, geojson +1
    Updated Aug 25, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Country Codes [Dataset]. https://public.opendatasoft.com/explore/dataset/countries-codes/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Aug 25, 2015
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Description

    Country codes: ISO 2ISO 3UNLANGLABEL (EN, FR, SP)

  13. Somalia - Population Counts - Dataset - SODMA Open Data Portal

    • sodma-dev.okfn.org
    Updated May 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sodma-dev.okfn.org (2025). Somalia - Population Counts - Dataset - SODMA Open Data Portal [Dataset]. https://sodma-dev.okfn.org/dataset/worldpop-population-counts-for-somalia
    Explore at:
    Dataset updated
    May 23, 2025
    Dataset provided by
    Open Knowledge Foundationhttp://okfn.org/
    Somali Disaster Management Agencyhttps://sodma.gov.so/
    Area covered
    Somalia
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset. Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App. The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively): Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020. Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020. Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019) -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019). -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets. -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020. -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019). Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent. Data for earlier dates is available directly from WorldPop. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  14. H

    Djibouti - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Djibouti - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-djibouti
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset provided by
    WorldPop
    Area covered
    Djibouti
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  15. H

    United States Minor Outlying Islands - Population Counts

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). United States Minor Outlying Islands - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-united-states-minor-outlying-islands
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    United States Minor Outlying Islands
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  16. H

    Sao Tome and Principe - Population Counts

    • data.humdata.org
    geotiff
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Sao Tome and Principe - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-sao-tome-and-principe
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset provided by
    WorldPop
    Area covered
    São Tomé and Príncipe
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  17. f

    datasheet1_Causal Datasheet for Datasets: An Evaluation Guide for Real-World...

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Butcher; Vincent S. Huang; Christopher Robinson; Jeremy Reffin; Sema K. Sgaier; Grace Charles; Novi Quadrianto (2023). datasheet1_Causal Datasheet for Datasets: An Evaluation Guide for Real-World Data Analysis and Data Collection Design Using Bayesian Networks.pdf [Dataset]. http://doi.org/10.3389/frai.2021.612551.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Bradley Butcher; Vincent S. Huang; Christopher Robinson; Jeremy Reffin; Sema K. Sgaier; Grace Charles; Novi Quadrianto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Developing data-driven solutions that address real-world problems requires understanding of these problems’ causes and how their interaction affects the outcome–often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing the causal relationships from observational data as a Directed Acyclic Graph (DAG). BNs could be especially useful for research in global health in Lower and Middle Income Countries, where there is an increasing abundance of observational data that could be harnessed for policy making, program evaluation, and intervention design. However, BNs have not been widely adopted by global health professionals, and in real-world applications, confidence in the results of BNs generally remains inadequate. This is partially due to the inability to validate against some ground truth, as the true DAG is not available. This is especially problematic if a learned DAG conflicts with pre-existing domain doctrine. Here we conceptualize and demonstrate an idea of a “Causal Datasheet” that could approximate and document BN performance expectations for a given dataset, aiming to provide confidence and sample size requirements to practitioners. To generate results for such a Causal Datasheet, a tool was developed which can generate synthetic Bayesian networks and their associated synthetic datasets to mimic real-world datasets. The results given by well-known structure learning algorithms and a novel implementation of the OrderMCMC method using the Quotient Normalized Maximum Likelihood score were recorded. These results were used to populate the Causal Datasheet, and recommendations could be made dependent on whether expected performance met user-defined thresholds. We present our experience in the creation of Causal Datasheets to aid analysis decisions at different stages of the research process. First, one was deployed to help determine the appropriate sample size of a planned study of sexual and reproductive health in Madhya Pradesh, India. Second, a datasheet was created to estimate the performance of an existing maternal health survey we conducted in Uttar Pradesh, India. Third, we validated generated performance estimates and investigated current limitations on the well-known ALARM dataset. Our experience demonstrates the utility of the Causal Datasheet, which can help global health practitioners gain more confidence when applying BNs.

  18. The global gender gap index 2025

    • statista.com
    Updated Jul 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). The global gender gap index 2025 [Dataset]. https://www.statista.com/statistics/244387/the-global-gender-gap-index/
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    The global gender gap index benchmarks national gender gaps on economic, political, education, and health-based criteria. In 2025, the country offering the most gender equal conditions was Iceland, with a score of 0.93. Overall, the Nordic countries make up 3 of the 5 most gender equal countries worldwide. The Nordic countries are known for their high levels of gender equality, including high female employment rates and evenly divided parental leave. Sudan is the second-least gender equal country Pakistan is found on the other end of the scale, ranked as the least gender equal country in the world. Conditions for civilians in the North African country have worsened significantly after a civil war broke out in April 2023. Especially girls and women are suffering and have become victims of sexual violence. Moreover, nearly 9 million people are estimated to be at acute risk of famine. The Middle East and North Africa have the largest gender gap Looking at the different world regions, the Middle East and North Africa have the largest gender gap as of 2023, just ahead of South Asia. Moreover, it is estimated that it will take another 152 years before the gender gap in the Middle East and North Africa is closed. On the other hand, Europe has the lowest gender gap in the world.

  19. Ranking of happiest countries worldwide 2024, by score

    • statista.com
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Ranking of happiest countries worldwide 2024, by score [Dataset]. https://www.statista.com/statistics/1225047/ranking-of-happiest-countries-worldwide-by-score/
    Explore at:
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Finland was ranked the happiest country in the world, according to the World Happiness Report from 2025. The Nordic country scored 7.74 on a scale from 0 to 10. Two other Nordic countries, Denmark and Iceland, followed in second and third place, respectively. The World Happiness Report is a landmark survey of the state of global happiness that ranks countries by how happy their citizens perceive themselves to be. Criticism The index has received criticism from different perspectives. Some argue that it is impossible to measure general happiness in a country. Others argue that the index places too much emphasis on material well-being as well as freedom from oppression. As a result, the Happy Planet Index was introduced, which takes life expectancy, experienced well-being, inequality of outcomes, and ecological footprint into account. Here, Costa Rica was ranked as the happiest country in the world. Afghanistan is the least happy country Nevertheless, most people agree that high levels of poverty, lack of access to food and water, as well as a prevalence of conflict are factors hindering public happiness. Hence, it comes as no surprise that Afghanistan was ranked as the least happy country in the world in 2024. The South Asian country is ridden by poverty and undernourishment, and topped the Global Terrorism Index in 2024.

  20. Z

    Dataset for: "Big data suggest strong constraints of linguistic similarity...

    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Job Schepens (2020). Dataset for: "Big data suggest strong constraints of linguistic similarity on adult language learning" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_2863532
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Roeland van Hout
    T. Florian Jaeger
    Job Schepens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is adapted from raw data with fully anonymized results on the State Examination of Dutch as a Second Language. This exam is officially administred by the Board of Tests and Examinations (College voor Toetsen en Examens, or CvTE). See cvte.nl/about-cvte. The Board of Tests and Examinations is mandated by the Dutch government.

    The article accompanying the dataset:

    Schepens, Job, Roeland van Hout, and T. Florian Jaeger. “Big Data Suggest Strong Constraints of Linguistic Similarity on Adult Language Learning.” Cognition 194 (January 1, 2020): 104056. https://doi.org/10.1016/j.cognition.2019.104056.

    Every row in the dataset represents the first official testing score of a unique learner. The columns contain the following information as based on questionnaires filled in at the time of the exam:

    "L1" - The first language of the learner "C" - The country of birth "L1L2" - The combination of first and best additional language besides Dutch "L2" - The best additional language besides Dutch "AaA" - Age at Arrival in the Netherlands in years (starting date of residence) "LoR" - Length of residence in the Netherlands in years "Edu.day" - Duration of daily education (1 low, 2 middle, 3 high, 4 very high). From 1992 until 2006, learners' education has been measured by means of a side-by-side matrix question in a learner's questionnaire. Learners were asked to mark which type of education they have had (elementary, secondary, or tertiary schooling) by means of filling in for how many years they have been enrolled, in which country, and whether or not they have graduated. Based on this information we were able to estimate how many years learners have had education on a daily basis from six years of age onwards. Since 2006, the question about learners' education has been altered and it is asked directly how many years learners have had formal education on a daily basis from six years of age onwards. Possible answering categories are: 1) 0 thru 5 years; 2) 6 thru 10 years; 3) 11 thru 15 years; 4) 16 years or more. The answers have been merged into the categorical answer. "Sex" - Gender "Family" - Language Family "ISO639.3" - Language ID code according to Ethnologue "Enroll" - Proportion of school-aged youth enrolled in secondary education according to the World Bank. The World Bank reports on education data in a wide number of countries around the world on a regular basis. We took the gross enrollment rate in secondary schooling per country in the year the learner has arrived in the Netherlands as an indicator for a country's educational accessibility at the time learners have left their country of origin. "STEX_speaking_score" - The STEX test score for speaking proficiency. "Dissimilarity_morphological" - Morphological similarity "Dissimilarity_lexical" - Lexical similarity "Dissimilarity_phonological_new_features" - Phonological similarity (in terms of new features) "Dissimilarity_phonological_new_categories" - Phonological similarity (in terms of new sounds)

    A few rows of the data:

    "L1","C","L1L2","L2","AaA","LoR","Edu.day","Sex","Family","ISO639.3","Enroll","STEX_speaking_score","Dissimilarity_morphological","Dissimilarity_lexical","Dissimilarity_phonological_new_features","Dissimilarity_phonological_new_categories" "English","UnitedStates","EnglishMonolingual","Monolingual",34,0,4,"Female","Indo-European","eng ",94,541,0.0094,0.083191,11,19 "English","UnitedStates","EnglishGerman","German",25,16,3,"Female","Indo-European","eng ",94,603,0.0094,0.083191,11,19 "English","UnitedStates","EnglishFrench","French",32,3,4,"Male","Indo-European","eng ",94,562,0.0094,0.083191,11,19 "English","UnitedStates","EnglishSpanish","Spanish",27,8,4,"Male","Indo-European","eng ",94,537,0.0094,0.083191,11,19 "English","UnitedStates","EnglishMonolingual","Monolingual",47,5,3,"Male","Indo-European","eng ",94,505,0.0094,0.083191,11,19

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
Organization logo

Large Scale International Boundaries

Explore at:
35 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 4, 2025
Dataset provided by
United States Department of Statehttp://state.gov/
Description

Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the

Search
Clear search
Close search
Google apps
Main menu